亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Revisiting the Growth Mechanism of Hierarchical Semiconductor Nanostructures: The Role of Secondary Nucleation in Branch Formation

成核 纤锌矿晶体结构 化学物理 纳米结构 纳米技术 支化(高分子化学) 材料科学 半导体 化学 复合材料 光电子学 有机化学 冶金
作者
Huan Liu,Maria L. Sushko,Edgar C. Buck,Xin Zhang,Libor Kovařík,Zhizhang Shen,Jinhui Tao,Elias Nakouzi,Jun Li,James J. De Yoreo
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:10 (21): 6827-6834 被引量:16
标识
DOI:10.1021/acs.jpclett.9b02110
摘要

Although there have been advances in synthesizing hierarchical semiconductor materials, few studies have investigated the fundamental nucleation mechanisms to explain the origins of such complex structures. Resolving these nucleation and growth pathways is technically challenging but critical for developing predictive synthetic capabilities for the synthesis and application of new materials. In this Letter, we use state-of-the-art in situ liquid phase scanning electron microscopy (SEM) and high-resolution transmission electron microscopy in a combination with classical density functional theory (cDFT) to study the nucleation of highly branched wurtzite ZnO nanostructures via a facile, room-temperature aqueous synthesis route. Using a range of precursor concentrations, we systematically vary the hierarchical organization of these nanostructures. In situ liquid phase SEM demonstrates that all branches form through secondary nucleation and grow by classical processes. Neither random aggregation nor oriented attachment is observed. cDFT results imply that the morphological evolution with increasing [Zn2+] arises from an interplay between a rising thermodynamic driving force, which promotes branch number and variability of orientation, and increasing barriers to interfacial transport due to ion correlation forces that alter the anisotropic kinetics of growth. These findings provide a quantitative picture of branching that sets to rest past controversies and advances efforts to decipher growth mechanisms of hierarchical structures in real solution environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
23秒前
Akim应助平淡的洪纲采纳,获得10
23秒前
26秒前
28秒前
ster223发布了新的文献求助10
29秒前
37秒前
41秒前
婉莹完成签到 ,获得积分10
1分钟前
旺仔先生完成签到 ,获得积分10
1分钟前
1933644015完成签到,获得积分10
1分钟前
1分钟前
幸运小狗完成签到,获得积分20
1分钟前
1分钟前
cc完成签到,获得积分20
1分钟前
情怀应助尊敬的芷卉采纳,获得10
1分钟前
研友_X89o6n完成签到,获得积分10
1分钟前
aa121599完成签到,获得积分20
1分钟前
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
朴素绿蝶发布了新的文献求助10
2分钟前
痴痴的噜完成签到,获得积分10
2分钟前
江姜酱先生完成签到,获得积分10
2分钟前
搞科研的小李同学完成签到 ,获得积分10
2分钟前
科研通AI6应助朴素绿蝶采纳,获得10
2分钟前
可爱的函函应助hulahula采纳,获得10
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
李健应助阿米尔盼盼采纳,获得10
2分钟前
2分钟前
hulahula发布了新的文献求助10
2分钟前
2分钟前
2分钟前
长度2到发布了新的文献求助10
3分钟前
xuan发布了新的文献求助10
3分钟前
长度2到完成签到,获得积分10
3分钟前
3分钟前
xtheuv发布了新的文献求助10
3分钟前
Hello应助hulahula采纳,获得10
3分钟前
嘻嘻哈哈完成签到 ,获得积分10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220819
求助须知:如何正确求助?哪些是违规求助? 4394077
关于积分的说明 13680135
捐赠科研通 4257061
什么是DOI,文献DOI怎么找? 2335959
邀请新用户注册赠送积分活动 1333553
关于科研通互助平台的介绍 1287992