Machine learning predictions on fracture toughness of multiscale bio-nano-composites

材料科学 复合材料 断裂韧性 韧性 夏比冲击试验 断裂力学 扫描电子显微镜 断裂(地质) 复合数
作者
Vahid Daghigh,Thomas E. Lacy,Hamid Daghigh,Grace X. Gu,Kourosh T. Baghaei,M.F. Horstemeyer,Charles U. Pittman
出处
期刊:Journal of Reinforced Plastics and Composites [SAGE Publishing]
卷期号:39 (15-16): 587-598 被引量:38
标识
DOI:10.1177/0731684420915984
摘要

Tailorability is an important advantage of composites. Incorporating new bio-reinforcements into composites can contribute to using agricultural wastes and creating tougher and more reliable materials. Nevertheless, the huge number of possible natural material combinations works against finding optimal composite designs. Here, machine learning was employed to effectively predict fracture toughness properties of multiscale bio-nano-composites. Charpy impact tests were conducted on composites with various combinations of two new bio fillers, pistachio shell powders, and fractal date seed particles, as well as nano-clays and short latania fibers, all which reinforce a poly(propylene)/ethylene–propylene–diene-monomer matrix. The measured energy absorptions obtained were used to calculate strain energy release rates as a fracture toughness parameter using linear elastic fracture mechanics and finite element analysis approaches. Despite the limited number of training data obtained from these impact tests and finite element analysis, the machine learning results were accurate for prediction and optimal design. This study applied the decision tree regressor and adaptive boosting regressor machine learning methods in contrast to the K-nearest neighbor regressor machine learning approach used in our previous study for heat deflection temperature predictions. Scanning electron microscopy, optical microscopy, and transmission electron microscopy were used to study the nano-clay dispersion and impact fracture morphology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助yls123采纳,获得10
1秒前
个性元枫发布了新的文献求助10
1秒前
三木发布了新的文献求助10
1秒前
李健应助科研工具人采纳,获得10
1秒前
米津浅兮应助zyj采纳,获得10
2秒前
3秒前
田様应助眯眯眼的安雁采纳,获得10
3秒前
小蘑菇应助Smilingrock采纳,获得10
3秒前
Sunsky完成签到,获得积分10
3秒前
Liu完成签到,获得积分10
3秒前
4秒前
liuchao发布了新的文献求助10
4秒前
王世缘完成签到,获得积分10
6秒前
6秒前
火龙果大王关注了科研通微信公众号
7秒前
陈友珍发布了新的文献求助10
8秒前
稳重中心发布了新的文献求助10
8秒前
科目三应助九川采纳,获得10
8秒前
顾矜应助飞飞采纳,获得10
10秒前
10秒前
大个应助个性元枫采纳,获得10
10秒前
10秒前
fangzheng完成签到,获得积分10
11秒前
11秒前
科研狗完成签到 ,获得积分10
11秒前
积极荆完成签到 ,获得积分10
12秒前
jzyy发布了新的文献求助10
12秒前
sztao发布了新的文献求助10
15秒前
科目三应助殷启维采纳,获得10
17秒前
Shu完成签到,获得积分20
17秒前
17秒前
18秒前
共享精神应助szh123采纳,获得10
19秒前
19秒前
犹豫大树发布了新的文献求助10
19秒前
柯伊达完成签到 ,获得积分10
21秒前
21秒前
朴素千亦完成签到,获得积分10
21秒前
售后延长发布了新的文献求助10
22秒前
危机的夏兰完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958850
求助须知:如何正确求助?哪些是违规求助? 3505102
关于积分的说明 11122496
捐赠科研通 3236558
什么是DOI,文献DOI怎么找? 1788899
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802794