Machine learning predictions on fracture toughness of multiscale bio-nano-composites

材料科学 复合材料 断裂韧性 韧性 夏比冲击试验 断裂力学 扫描电子显微镜 断裂(地质) 复合数
作者
Vahid Daghigh,Thomas E. Lacy,Hamid Daghigh,Grace X. Gu,Kourosh T. Baghaei,M.F. Horstemeyer,Charles U. Pittman
出处
期刊:Journal of Reinforced Plastics and Composites [SAGE]
卷期号:39 (15-16): 587-598 被引量:38
标识
DOI:10.1177/0731684420915984
摘要

Tailorability is an important advantage of composites. Incorporating new bio-reinforcements into composites can contribute to using agricultural wastes and creating tougher and more reliable materials. Nevertheless, the huge number of possible natural material combinations works against finding optimal composite designs. Here, machine learning was employed to effectively predict fracture toughness properties of multiscale bio-nano-composites. Charpy impact tests were conducted on composites with various combinations of two new bio fillers, pistachio shell powders, and fractal date seed particles, as well as nano-clays and short latania fibers, all which reinforce a poly(propylene)/ethylene–propylene–diene-monomer matrix. The measured energy absorptions obtained were used to calculate strain energy release rates as a fracture toughness parameter using linear elastic fracture mechanics and finite element analysis approaches. Despite the limited number of training data obtained from these impact tests and finite element analysis, the machine learning results were accurate for prediction and optimal design. This study applied the decision tree regressor and adaptive boosting regressor machine learning methods in contrast to the K-nearest neighbor regressor machine learning approach used in our previous study for heat deflection temperature predictions. Scanning electron microscopy, optical microscopy, and transmission electron microscopy were used to study the nano-clay dispersion and impact fracture morphology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熠紋应助nana采纳,获得10
刚刚
烟花应助执着从筠采纳,获得10
刚刚
大神瓜完成签到,获得积分10
刚刚
哎呀完成签到,获得积分10
1秒前
2秒前
学习发布了新的文献求助10
2秒前
deng发布了新的文献求助10
2秒前
2秒前
Akim应助丸琪琪采纳,获得10
2秒前
Akim应助ximi采纳,获得10
2秒前
何玉莲完成签到,获得积分10
3秒前
大豌豆发布了新的文献求助10
3秒前
熠紋应助好运6连采纳,获得10
3秒前
小玲完成签到,获得积分20
3秒前
3秒前
SYY发布了新的文献求助10
3秒前
搜集达人应助Sugihara采纳,获得10
3秒前
4秒前
4秒前
LQ发布了新的文献求助30
4秒前
dmyinZz发布了新的文献求助10
4秒前
补作业的糖豆完成签到,获得积分10
4秒前
失眠的耳机完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
wyp0101完成签到,获得积分10
6秒前
ying完成签到,获得积分10
6秒前
邱邵芸发布了新的文献求助30
7秒前
车宇完成签到 ,获得积分10
7秒前
7秒前
为霜发布了新的文献求助10
7秒前
7秒前
8秒前
佳佳完成签到,获得积分10
8秒前
莫离发布了新的文献求助10
8秒前
不倦应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869