Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification

痴呆 神经影像学 疾病 弗雷明翰心脏研究 计算机科学 神经心理学 弗雷明翰风险评分 生物标志物 人口 深度学习 医学 阿尔茨海默病 人工智能 心理学 神经科学 认知 病理 生物化学 化学 环境卫生
作者
Shangran Qiu,Prajakta Joshi,Matthew I. Miller,Chonghua Xue,Xiao Zhou,Cody Karjadi,Gary H. Chang,Anant S. Joshi,Brigid Dwyer,Shuhan Zhu,Michelle Kaku,Yan Zhou,Yazan J. Alderazi,Arun Swaminathan,Sachin Kedar,Marie Saint‐Hilaire,Sanford Auerbach,Jing Yuan,E. Alton Sartor,Rhoda Au,Vijaya B. Kolachalama
出处
期刊:Brain [Oxford University Press]
卷期号:143 (6): 1920-1933 被引量:280
标识
DOI:10.1093/brain/awaa137
摘要

Abstract Alzheimer’s disease is the primary cause of dementia worldwide, with an increasing morbidity burden that may outstrip diagnosis and management capacity as the population ages. Current methods integrate patient history, neuropsychological testing and MRI to identify likely cases, yet effective practices remain variably applied and lacking in sensitivity and specificity. Here we report an interpretable deep learning strategy that delineates unique Alzheimer’s disease signatures from multimodal inputs of MRI, age, gender, and Mini-Mental State Examination score. Our framework linked a fully convolutional network, which constructs high resolution maps of disease probability from local brain structure to a multilayer perceptron and generates precise, intuitive visualization of individual Alzheimer’s disease risk en route to accurate diagnosis. The model was trained using clinically diagnosed Alzheimer’s disease and cognitively normal subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (n = 417) and validated on three independent cohorts: the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) (n = 382), the Framingham Heart Study (n = 102), and the National Alzheimer’s Coordinating Center (NACC) (n = 582). Performance of the model that used the multimodal inputs was consistent across datasets, with mean area under curve values of 0.996, 0.974, 0.876 and 0.954 for the ADNI study, AIBL, Framingham Heart Study and NACC datasets, respectively. Moreover, our approach exceeded the diagnostic performance of a multi-institutional team of practicing neurologists (n = 11), and high-risk cerebral regions predicted by the model closely tracked post-mortem histopathological findings. This framework provides a clinically adaptable strategy for using routinely available imaging techniques such as MRI to generate nuanced neuroimaging signatures for Alzheimer’s disease diagnosis, as well as a generalizable approach for linking deep learning to pathophysiological processes in human disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助化学狗采纳,获得10
1秒前
温纲完成签到,获得积分10
2秒前
泓泽完成签到,获得积分10
2秒前
包容友儿发布了新的文献求助10
3秒前
博闻发布了新的文献求助10
3秒前
草莓熊完成签到,获得积分10
5秒前
二掌柜完成签到,获得积分10
5秒前
乖乖完成签到,获得积分10
5秒前
6秒前
掌灯师完成签到,获得积分20
6秒前
6秒前
花开米兰城完成签到,获得积分10
7秒前
汉堡包应助123采纳,获得10
7秒前
Wfmmm完成签到,获得积分10
9秒前
Dabiel1213完成签到,获得积分10
9秒前
9秒前
dev-evo完成签到,获得积分10
10秒前
10秒前
泓泽发布了新的文献求助10
10秒前
10秒前
sdsd发布了新的文献求助10
10秒前
rgaerva应助Omni采纳,获得10
10秒前
大兔子yo完成签到 ,获得积分10
11秒前
醒醒发布了新的文献求助10
11秒前
12秒前
HXia完成签到 ,获得积分10
12秒前
12秒前
stop here发布了新的文献求助10
13秒前
littleyi应助111采纳,获得10
13秒前
13秒前
化学狗发布了新的文献求助10
13秒前
香蕉觅云应助云_123采纳,获得30
14秒前
Jasper应助1111采纳,获得10
14秒前
小福泥完成签到,获得积分20
15秒前
li完成签到 ,获得积分10
15秒前
15秒前
16秒前
舒心的青亦完成签到,获得积分10
17秒前
科研通AI2S应助科研采纳,获得10
17秒前
anydwason发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847