已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AutoFCL: automatically tuning fully connected layers for handling small dataset

计算机科学 水准点(测量) 卷积神经网络 贝叶斯优化 任务(项目管理) 人工智能 学习迁移 深度学习 机器学习 编码(集合论) 模式识别(心理学) 源代码 国家(计算机科学) 算法 管理 大地测量学 集合(抽象数据类型) 经济 程序设计语言 地理 操作系统
作者
S. H. Shabbeer Basha,Sravan Kumar Vinakota,Shiv Ram Dubey,Viswanath Pulabaigari,Snehasis Mukherjee
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
卷期号:33 (13): 8055-8065 被引量:20
标识
DOI:10.1007/s00521-020-05549-4
摘要

Deep convolutional neural networks (CNN) have evolved as popular machine learning models for image classification during the past few years, due to their ability to learn the problem-specific features directly from the input images. The success of deep learning models solicits architecture engineering rather than hand-engineering the features. However, designing state-of-the-art CNN for a given task remains a non-trivial and challenging task, especially when training data size is less. To address this phenomena, transfer learning has been used as a popularly adopted technique. While transferring the learned knowledge from one task to another, fine-tuning with the target-dependent fully connected (FC) layers generally produces better results over the target task. In this paper, the proposed AutoFCL model attempts to learn the structure of FC layers of a CNN automatically using Bayesian Optimization. To evaluate the performance of the proposed AutoFCL, we utilize five pre-trained CNN models such as VGG-16, ResNet, DenseNet, MobileNet, and NASNetMobile. The experiments are conducted on three benchmark datasets, namely CalTech-101, Oxford-102 Flowers, and UC Merced Land Use datasets. Fine-tuning the newly learned (target-dependent) FC layers leads to state-of-the-art performance, according to the experiments carried out in this research. The proposed AutoFCL method outperforms the existing methods over CalTech-101 and Oxford-102 Flowers datasets by achieving the accuracy of $$94.38\%$$ and $$98.89\%$$ , respectively. However, our method achieves comparable performance on the UC Merced Land Use dataset with $$96.83\%$$ accuracy. The source code of this research is available at https://github.com/shabbeersh/AutoFCL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助顺心初蓝采纳,获得10
1秒前
Jiaxin_Wu发布了新的文献求助10
1秒前
lrl350495627发布了新的文献求助10
1秒前
邰墨以完成签到 ,获得积分10
1秒前
Lh发布了新的文献求助10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
天才瞳瞳完成签到 ,获得积分10
8秒前
9秒前
木讷山完成签到,获得积分10
9秒前
科研通AI2S应助Lendar采纳,获得10
11秒前
lrl350495627完成签到,获得积分10
12秒前
情怀应助guoguo82采纳,获得10
12秒前
Ethereal完成签到,获得积分10
12秒前
12秒前
acs924完成签到,获得积分10
12秒前
13秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725072
求助须知:如何正确求助?哪些是违规求助? 3270199
关于积分的说明 9964783
捐赠科研通 2985066
什么是DOI,文献DOI怎么找? 1637789
邀请新用户注册赠送积分活动 777716
科研通“疑难数据库(出版商)”最低求助积分说明 747146