Code-Aligned Autoencoders for Unsupervised Change Detection in Multimodal Remote Sensing Images

变更检测 计算机科学 编码(集合论) 人工智能 遥感 模式识别(心理学) 地理 程序设计语言 集合(抽象数据类型)
作者
Luigi Tommaso Luppino,Mads A. Hansen,Michael Kampffmeyer,Filippo Maria Bianchi,Gabriele Moser,Robert Jenssen,Stian Normann Anfinsen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 60-72 被引量:79
标识
DOI:10.1109/tnnls.2022.3172183
摘要

Image translation with convolutional autoencoders has recently been used as an approach to multimodal change detection (CD) in bitemporal satellite images. A main challenge is the alignment of the code spaces by reducing the contribution of change pixels to the learning of the translation function. Many existing approaches train the networks by exploiting supervised information of the change areas, which, however, is not always available. We propose to extract relational pixel information captured by domain-specific affinity matrices at the input and use this to enforce alignment of the code spaces and reduce the impact of change pixels on the learning objective. A change prior is derived in an unsupervised fashion from pixel pair affinities that are comparable across domains. To achieve code space alignment, we enforce pixels with similar affinity relations in the input domains to be correlated also in code space. We demonstrate the utility of this procedure in combination with cycle consistency. The proposed approach is compared with the state-of-the-art machine learning and deep learning algorithms. Experiments conducted on four real and representative datasets show the effectiveness of our methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jessica发布了新的文献求助10
刚刚
sjk关闭了sjk文献求助
1秒前
1秒前
gyf发布了新的文献求助10
1秒前
2秒前
赵赵a应助yongji采纳,获得20
2秒前
乐乐应助Dobronx03采纳,获得10
3秒前
3秒前
4秒前
4秒前
等你下课发布了新的文献求助10
4秒前
wxy完成签到,获得积分10
4秒前
5秒前
wang发布了新的文献求助10
6秒前
某某完成签到,获得积分10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
十月完成签到,获得积分20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
大方无心应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
妮妮你完成签到 ,获得积分10
9秒前
kiki发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
隐形元绿发布了新的文献求助10
10秒前
11秒前
lx33101128发布了新的文献求助10
12秒前
12秒前
Jessica完成签到,获得积分10
13秒前
13秒前
13秒前
靬七完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685