(Invited) Defect Engineering in Plasma-Treated Graphene Films

晶界 材料科学 石墨烯 等离子体 拉曼光谱 化学物理 离子 空位缺陷 纳米技术 原子物理学 微观结构 化学 复合材料 结晶学 光学 量子力学 物理 有机化学
作者
Luc Stafford
出处
期刊:Meeting abstracts 卷期号:MA2021-01 (12): 602-602
标识
DOI:10.1149/ma2021-0112602mtgabs
摘要

Engineering of defects located in-grain or at grain boundary is central to the development of functional materials and nanomaterials. While there is a recent surge of interest in the formation, migration, and annihilation of defects during ion and plasma irradiation of bulk (3D) materials, the detailed behavior in low-dimensional materials remains most unexplored and especially difficult to assess experimentally. A new hyperspectral Raman imaging scheme providing high selectivity and diffraction-limited spatial resolution is here adapted to examine plasma-induced damage in a polycrystalline graphene film grown by chemical vapor deposition on copper substrates and then transferred on silicon substrates. For experiments realized in nominally pure argon plasmas at low pressure, spatially resolved Raman conducted before and after each plasma treatment shows that the defect generation in graphene films exposed to very low-energy (11 eV) ion bombardment follows a 0D defect curve, while the domain boundaries tend to develop as 1D defects. Surprisingly and contrary to common expectations of plasma-surface interactions, damage generation at grain boundaries is slower than within the grains. Inspired by recent modeling studies, this behavior can be ascribed to a lattice reconstruction mechanism occurring preferentially at domain boundaries and induced by preferential atom migration and adatom-vacancy recombination. Further studies were realized to compare the impact of different plasma environments promoting either positive argon ions, metastable argon species, or VUV-photons on the damage formation dynamics. While most of the defect formation is due to knock-on collisions by 11-eV argon ions, the combination with VUV-photon or metastable atom irradiation is found to have a very different impact. In the former, the photons are mainly thought to clean the films from PMMA residues due to graphene transfer from copper to silicon substrates. On the other hand, in conditions with both ion and metastable atom irradiation, the surface de-excitation of the latter seem to greatly enhance the self-healing of the grain boundaries due to an increase of the local energy deposition. Finally, these experiments were used as building blocks to examine the formation of chemically doped graphene film in such plasmas using argon mixed with either traces of N- or B-bearing gases. While preferential n-type doping was observed in graphene domains in nitrogen-containing plasmas, preferential p-type doping was observed at grain boundaries in boron-containing plasmas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋千兰完成签到,获得积分10
1秒前
顺利萃发布了新的文献求助30
1秒前
皮老师发布了新的文献求助10
2秒前
2秒前
fanmo完成签到 ,获得积分0
3秒前
3秒前
聪慧的小土豆完成签到 ,获得积分10
5秒前
5秒前
自觉的凌青完成签到,获得积分10
5秒前
7秒前
9秒前
畅快芝麻发布了新的文献求助10
9秒前
zriverm发布了新的文献求助10
11秒前
干煸鸡发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
呸呸晓鹏发布了新的文献求助10
19秒前
枫之林发布了新的文献求助10
20秒前
小蘑菇应助zriverm采纳,获得10
22秒前
22秒前
22秒前
SciGPT应助小鱼采纳,获得10
23秒前
学术渣渣发布了新的文献求助30
23秒前
渡劫完成签到,获得积分10
24秒前
24秒前
27秒前
靓丽雨梅完成签到 ,获得积分10
27秒前
等待的花生完成签到,获得积分10
27秒前
29秒前
Mangues发布了新的文献求助30
29秒前
呸呸晓鹏完成签到,获得积分20
29秒前
搜集达人应助xuxu采纳,获得10
30秒前
111111关注了科研通微信公众号
31秒前
31秒前
31秒前
小唐尼发布了新的文献求助30
35秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073