An improved deep residual network with multiscale feature fusion for rotating machinery fault diagnosis

计算机科学 残余物 块(置换群论) 卷积(计算机科学) 人工智能 断层(地质) 深度学习 模式识别(心理学) 特征(语言学) 人工神经网络 卷积神经网络 数据挖掘 算法 数学 哲学 地质学 几何学 地震学 语言学
作者
Feiyue Deng,Hao Ding,Shaopu Yang,Rujiang Hao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (2): 024002-024002 被引量:37
标识
DOI:10.1088/1361-6501/abb917
摘要

Abstract Intelligent mechanical fault diagnosis algorithms based on deep learning have achieved considerable success in recent years. However, degradation of the diagnostic accuracy and operational speed has been significant due to unfavorable working conditions and increasing network depth. An improved version of ResNets is proposed in this paper to address these issues. The advantages of the proposed network are presented as follows. Firstly, a multi-scale feature fusion block was designed, to extract multi-scale fault feature information. Secondly, an improved residual block based on depthwise separable convolution was used to improve the operational speed and alleviate the computational burden of the network. The effectiveness of the proposed network was validated by discriminating between diverse health states in a gearbox under normal and noisy conditions. The experimental results show that the proposed network model has a higher classification accuracy than the classical convolutional neural networks, LeNet-5, AlexNet and ResNets and a faster calculation speed than the classical deep neural networks. Furthermore, a visual study of the different stages of the network model was conducted, to effectively comprehend the operational processes of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熟悉的ZY先生应助yayan采纳,获得10
刚刚
2秒前
传奇3应助Hommand_藏山采纳,获得10
3秒前
灰鸽舞发布了新的文献求助10
5秒前
我是老大应助小黑采纳,获得10
11秒前
宗磬完成签到,获得积分20
11秒前
12秒前
12秒前
12秒前
16秒前
16秒前
Nana发布了新的文献求助10
16秒前
17秒前
hou完成签到 ,获得积分10
19秒前
科研狗完成签到,获得积分10
19秒前
完美世界应助诚心的若南采纳,获得10
19秒前
zho发布了新的文献求助10
19秒前
lz完成签到,获得积分10
20秒前
Orange应助阿飞采纳,获得10
21秒前
yayan完成签到,获得积分10
21秒前
李雷发布了新的文献求助10
23秒前
cooper完成签到 ,获得积分10
23秒前
25秒前
无花果应助陈朝旧迹采纳,获得10
28秒前
领导范儿应助z小侠采纳,获得10
29秒前
xiaoxin发布了新的文献求助10
30秒前
岳饼完成签到 ,获得积分20
30秒前
zho发布了新的文献求助10
31秒前
afeifei完成签到,获得积分10
31秒前
33秒前
123发布了新的文献求助10
33秒前
34秒前
肖sir666完成签到,获得积分10
35秒前
海虎爆破拳完成签到,获得积分10
36秒前
华仔应助孟韩采纳,获得10
36秒前
36秒前
忧虑的羊发布了新的文献求助10
37秒前
科研通AI2S应助xiaoxin采纳,获得10
39秒前
40秒前
陈朝旧迹发布了新的文献求助10
41秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267593
求助须知:如何正确求助?哪些是违规求助? 2907038
关于积分的说明 8340448
捐赠科研通 2577657
什么是DOI,文献DOI怎么找? 1401216
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633967