An improved deep residual network with multiscale feature fusion for rotating machinery fault diagnosis

计算机科学 残余物 块(置换群论) 卷积(计算机科学) 人工智能 断层(地质) 深度学习 模式识别(心理学) 特征(语言学) 人工神经网络 卷积神经网络 数据挖掘 算法 数学 哲学 地质学 几何学 地震学 语言学
作者
Feiyue Deng,Hao Ding,Shaopu Yang,Rujiang Hao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (2): 024002-024002 被引量:37
标识
DOI:10.1088/1361-6501/abb917
摘要

Abstract Intelligent mechanical fault diagnosis algorithms based on deep learning have achieved considerable success in recent years. However, degradation of the diagnostic accuracy and operational speed has been significant due to unfavorable working conditions and increasing network depth. An improved version of ResNets is proposed in this paper to address these issues. The advantages of the proposed network are presented as follows. Firstly, a multi-scale feature fusion block was designed, to extract multi-scale fault feature information. Secondly, an improved residual block based on depthwise separable convolution was used to improve the operational speed and alleviate the computational burden of the network. The effectiveness of the proposed network was validated by discriminating between diverse health states in a gearbox under normal and noisy conditions. The experimental results show that the proposed network model has a higher classification accuracy than the classical convolutional neural networks, LeNet-5, AlexNet and ResNets and a faster calculation speed than the classical deep neural networks. Furthermore, a visual study of the different stages of the network model was conducted, to effectively comprehend the operational processes of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
钰灵QAQ发布了新的文献求助10
4秒前
莎akkk完成签到,获得积分10
4秒前
4秒前
5秒前
赘婿应助阿圆采纳,获得10
6秒前
BK_发布了新的文献求助10
7秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
曾曾完成签到,获得积分10
12秒前
12秒前
雾眠气泡水完成签到,获得积分20
13秒前
15秒前
15秒前
冯宝宝发布了新的文献求助10
16秒前
Wangxiaoyan发布了新的文献求助10
16秒前
16秒前
曾曾发布了新的文献求助10
17秒前
17秒前
qhy发布了新的文献求助10
20秒前
20秒前
包容的世倌完成签到 ,获得积分10
20秒前
21秒前
慕容迎松发布了新的文献求助10
22秒前
乔孟婷完成签到,获得积分10
22秒前
强健的梦蕊完成签到 ,获得积分10
22秒前
23秒前
lyon完成签到 ,获得积分10
23秒前
野原完成签到,获得积分10
23秒前
阿圆发布了新的文献求助10
25秒前
26秒前
思源应助不打烊吗采纳,获得10
27秒前
手拿小铁锤完成签到,获得积分20
28秒前
qingkong完成签到 ,获得积分10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998074
求助须知:如何正确求助?哪些是违规求助? 3537636
关于积分的说明 11272063
捐赠科研通 3276726
什么是DOI,文献DOI怎么找? 1807114
邀请新用户注册赠送积分活动 883710
科研通“疑难数据库(出版商)”最低求助积分说明 810007