Blur and noisy image restoration for near real time applications

去模糊 图像复原 维纳滤波器 降噪 反褶积 人工智能 盲反褶积 计算机视觉 维纳反褶积 计算机科学 噪音(视频) 逆滤波器 点扩散函数 非本地手段 最小均方误差 数学 图像(数学) 算法 图像处理 反向 图像去噪 统计 估计员 几何学
作者
Gyanendra Singh,Rahul Kumar,Brajesh Kumar Kaushik,Ravi Balasubramanian
标识
DOI:10.1117/12.2528107
摘要

Image restoration of blur and noisy images can be performed in either of the two ways i.e. denoising after deblurring or deblurring after denoising. While performing deblurring after denoising, the residual noise is greatly amplified due to the subsequent deblurring process. In case of denoising after deblurring, the denoising stage severely blurs the image and leads to inadequate restoration. Denoising can be done mainly in two ways namely, linear filtering and non-linear filtering. The former one is fast and easy to implement. However, it produces a serious image blurring. Nonlinear filters can efficiently overcome this limitation and results in highly improved filtering performance but at the cost of high computational complexity. Few filtering algorithms have been proposed for performing image denoising and deblurring simultaneously. This paper presents a novel algorithm for the restoration of blur and noisy images for near real time applications. The proposed algorithm is based on PSF (Point Spread Function) estimation and Wiener filtering. The Wiener filter removes the additive noise and inverts the blurring simultaneously and thus performs an optimal trade-off between inverse filtering and noise suppressing. The Wiener filtering minimizes the overall mean square error in the process of noise suppressing. The PSF used for Wiener filtering is estimated using blind deconvolution. This is a noniterative process and provides faster results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘趣酒完成签到,获得积分10
刚刚
高大厉完成签到,获得积分20
刚刚
搜集达人应助欣喜成仁采纳,获得10
2秒前
li完成签到 ,获得积分10
3秒前
田様应助小小哈采纳,获得10
4秒前
4秒前
nan发布了新的文献求助10
4秒前
酷波er应助ypppp采纳,获得10
4秒前
所所应助zx采纳,获得10
5秒前
6秒前
6秒前
充电宝应助脾气好好的蛇采纳,获得10
6秒前
科目三应助奶酪芝士采纳,获得10
7秒前
9秒前
10秒前
可爱的函函应助nan采纳,获得10
11秒前
jyy完成签到 ,获得积分10
11秒前
Lore发布了新的文献求助10
12秒前
hl应助葳蕤采纳,获得10
13秒前
勤奋曼雁发布了新的文献求助10
13秒前
zzz1231123应助keyaner采纳,获得200
14秒前
如意若冰完成签到 ,获得积分10
14秒前
复杂涵柏完成签到,获得积分10
14秒前
高高完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
wanci应助科研通管家采纳,获得10
17秒前
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
fifteen应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
十万八千完成签到,获得积分10
18秒前
宇心应助张zhang采纳,获得10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170410
求助须知:如何正确求助?哪些是违规求助? 2821594
关于积分的说明 7935169
捐赠科研通 2481933
什么是DOI,文献DOI怎么找? 1322166
科研通“疑难数据库(出版商)”最低求助积分说明 633525
版权声明 602608