Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network

医学 卷积神经网络 人工智能 发育不良 癌症 放射科 前瞻性队列研究 残差神经网络 模式识别(心理学) 病理 内科学 计算机科学
作者
Bum-Joo Cho,Chang Seok Bang,Se Woo Park,Young Joo Yang,Seung In Seo,Hyun Lim,Woon Geon Shin,Ji Taek Hong,Yong Tak Yoo,Seok Hwan Hong,Jae Ho Choi,Jae Jun Lee,Gwang Ho Baik
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:51 (12): 1121-1129 被引量:92
标识
DOI:10.1055/a-0981-6133
摘要

Abstract Background Visual inspection, lesion detection, and differentiation between malignant and benign features are key aspects of an endoscopist’s role. The use of machine learning for the recognition and differentiation of images has been increasingly adopted in clinical practice. This study aimed to establish convolutional neural network (CNN) models to automatically classify gastric neoplasms based on endoscopic images. Methods Endoscopic white-light images of pathologically confirmed gastric lesions were collected and classified into five categories: advanced gastric cancer, early gastric cancer, high grade dysplasia, low grade dysplasia, and non-neoplasm. Three pretrained CNN models were fine-tuned using a training dataset. The classifying performance of the models was evaluated using a test dataset and a prospective validation dataset. Results A total of 5017 images were collected from 1269 patients, among which 812 images from 212 patients were used as the test dataset. An additional 200 images from 200 patients were collected and used for prospective validation. For the five-category classification, the weighted average accuracy of the Inception-Resnet-v2 model reached 84.6 %. The mean area under the curve (AUC) of the model for differentiating gastric cancer and neoplasm was 0.877 and 0.927, respectively. In prospective validation, the Inception-Resnet-v2 model showed lower performance compared with the endoscopist with the best performance (five-category accuracy 76.4 % vs. 87.6 %; cancer 76.0 % vs. 97.5 %; neoplasm 73.5 % vs. 96.5 %; P < 0.001). However, there was no statistical difference between the Inception-Resnet-v2 model and the endoscopist with the worst performance in the differentiation of gastric cancer (accuracy 76.0 % vs. 82.0 %) and neoplasm (AUC 0.776 vs. 0.865). Conclusion The evaluated deep-learning models have the potential for clinical application in classifying gastric cancer or neoplasm on endoscopic white-light images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
waddyg完成签到,获得积分10
3秒前
浮游应助Solkatt采纳,获得10
4秒前
5秒前
6秒前
喜悦的依琴完成签到,获得积分10
8秒前
zsp完成签到 ,获得积分10
10秒前
keke发布了新的文献求助10
12秒前
12秒前
15秒前
17秒前
auggy发布了新的文献求助10
19秒前
yaya完成签到 ,获得积分10
20秒前
棒棒堂发布了新的文献求助10
20秒前
22秒前
田様应助Xjx6519采纳,获得10
26秒前
852应助光亮的太阳采纳,获得10
27秒前
皇家咖啡完成签到 ,获得积分10
28秒前
现代水卉完成签到,获得积分10
29秒前
科研通AI6应助Jere采纳,获得20
29秒前
29秒前
30秒前
我要发一刊完成签到 ,获得积分10
33秒前
无情峻熙发布了新的文献求助10
34秒前
小蘑菇应助qqqq采纳,获得10
36秒前
36秒前
lyzhywj完成签到,获得积分10
40秒前
41秒前
现代水卉发布了新的文献求助10
42秒前
禹平露发布了新的文献求助10
47秒前
49秒前
Lancet发布了新的文献求助10
53秒前
54秒前
黄景阳完成签到 ,获得积分10
54秒前
56秒前
小马甲应助lucky采纳,获得10
57秒前
qqqq发布了新的文献求助10
1分钟前
Xjx6519发布了新的文献求助10
1分钟前
上善若水发布了新的文献求助10
1分钟前
慕青应助学术通zzz采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557614
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668844
捐赠科研通 4584126
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523