已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network

医学 卷积神经网络 人工智能 发育不良 癌症 放射科 前瞻性队列研究 残差神经网络 模式识别(心理学) 病理 内科学 计算机科学
作者
Bum-Joo Cho,Chang Seok Bang,Se Woo Park,Young Joo Yang,Seung In Seo,Hyun Lim,Woon Geon Shin,Ji Taek Hong,Yong Tak Yoo,Seok Hwan Hong,Jae Ho Choi,Jae Jun Lee,Gwang Ho Baik
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:51 (12): 1121-1129 被引量:92
标识
DOI:10.1055/a-0981-6133
摘要

Abstract Background Visual inspection, lesion detection, and differentiation between malignant and benign features are key aspects of an endoscopist’s role. The use of machine learning for the recognition and differentiation of images has been increasingly adopted in clinical practice. This study aimed to establish convolutional neural network (CNN) models to automatically classify gastric neoplasms based on endoscopic images. Methods Endoscopic white-light images of pathologically confirmed gastric lesions were collected and classified into five categories: advanced gastric cancer, early gastric cancer, high grade dysplasia, low grade dysplasia, and non-neoplasm. Three pretrained CNN models were fine-tuned using a training dataset. The classifying performance of the models was evaluated using a test dataset and a prospective validation dataset. Results A total of 5017 images were collected from 1269 patients, among which 812 images from 212 patients were used as the test dataset. An additional 200 images from 200 patients were collected and used for prospective validation. For the five-category classification, the weighted average accuracy of the Inception-Resnet-v2 model reached 84.6 %. The mean area under the curve (AUC) of the model for differentiating gastric cancer and neoplasm was 0.877 and 0.927, respectively. In prospective validation, the Inception-Resnet-v2 model showed lower performance compared with the endoscopist with the best performance (five-category accuracy 76.4 % vs. 87.6 %; cancer 76.0 % vs. 97.5 %; neoplasm 73.5 % vs. 96.5 %; P < 0.001). However, there was no statistical difference between the Inception-Resnet-v2 model and the endoscopist with the worst performance in the differentiation of gastric cancer (accuracy 76.0 % vs. 82.0 %) and neoplasm (AUC 0.776 vs. 0.865). Conclusion The evaluated deep-learning models have the potential for clinical application in classifying gastric cancer or neoplasm on endoscopic white-light images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ying818k完成签到 ,获得积分10
2秒前
小柯基学从零学起完成签到 ,获得积分10
2秒前
在水一方应助xuyidan采纳,获得10
3秒前
dudu完成签到,获得积分10
4秒前
6秒前
简简单单发布了新的文献求助10
6秒前
领导范儿应助隐形盼海采纳,获得10
7秒前
天才幸运鱼完成签到,获得积分10
8秒前
cocolu应助澜生采纳,获得10
9秒前
10秒前
12秒前
爱科研的小周完成签到 ,获得积分10
13秒前
无情代柔发布了新的文献求助10
15秒前
逃离地球完成签到 ,获得积分10
16秒前
16秒前
赫贞完成签到,获得积分10
16秒前
方越完成签到,获得积分10
16秒前
xuyidan发布了新的文献求助10
17秒前
FFFFF完成签到 ,获得积分10
17秒前
苗小天完成签到,获得积分10
17秒前
18秒前
简简单单完成签到,获得积分10
19秒前
上官若男应助Alicia采纳,获得50
19秒前
489完成签到 ,获得积分10
20秒前
Hshi完成签到 ,获得积分10
21秒前
朴素妙梦完成签到,获得积分10
21秒前
22秒前
livian完成签到,获得积分20
23秒前
思源应助大气的谷梦采纳,获得10
23秒前
zhj发布了新的文献求助10
24秒前
24秒前
xuyidan完成签到,获得积分10
29秒前
livian发布了新的文献求助30
31秒前
monster完成签到 ,获得积分10
31秒前
抠鼻公主完成签到 ,获得积分10
31秒前
依云矿泉水应助yongon采纳,获得10
32秒前
zhj完成签到,获得积分10
32秒前
居里姐姐完成签到 ,获得积分10
33秒前
研友_850aeZ完成签到,获得积分10
36秒前
老铁完成签到 ,获得积分10
36秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330319
求助须知:如何正确求助?哪些是违规求助? 2959871
关于积分的说明 8597630
捐赠科研通 2638443
什么是DOI,文献DOI怎么找? 1444389
科研通“疑难数据库(出版商)”最低求助积分说明 669096
邀请新用户注册赠送积分活动 656702