Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network

医学 卷积神经网络 人工智能 发育不良 癌症 放射科 前瞻性队列研究 残差神经网络 模式识别(心理学) 病理 内科学 计算机科学
作者
Bum-Joo Cho,Chang Seok Bang,Se Woo Park,Young Joo Yang,Seung In Seo,Hyun Lim,Woon Geon Shin,Ji Taek Hong,Yong Tak Yoo,Seok Hwan Hong,Jae Ho Choi,Jae Jun Lee,Gwang Ho Baik
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:51 (12): 1121-1129 被引量:92
标识
DOI:10.1055/a-0981-6133
摘要

Abstract Background Visual inspection, lesion detection, and differentiation between malignant and benign features are key aspects of an endoscopist’s role. The use of machine learning for the recognition and differentiation of images has been increasingly adopted in clinical practice. This study aimed to establish convolutional neural network (CNN) models to automatically classify gastric neoplasms based on endoscopic images. Methods Endoscopic white-light images of pathologically confirmed gastric lesions were collected and classified into five categories: advanced gastric cancer, early gastric cancer, high grade dysplasia, low grade dysplasia, and non-neoplasm. Three pretrained CNN models were fine-tuned using a training dataset. The classifying performance of the models was evaluated using a test dataset and a prospective validation dataset. Results A total of 5017 images were collected from 1269 patients, among which 812 images from 212 patients were used as the test dataset. An additional 200 images from 200 patients were collected and used for prospective validation. For the five-category classification, the weighted average accuracy of the Inception-Resnet-v2 model reached 84.6 %. The mean area under the curve (AUC) of the model for differentiating gastric cancer and neoplasm was 0.877 and 0.927, respectively. In prospective validation, the Inception-Resnet-v2 model showed lower performance compared with the endoscopist with the best performance (five-category accuracy 76.4 % vs. 87.6 %; cancer 76.0 % vs. 97.5 %; neoplasm 73.5 % vs. 96.5 %; P < 0.001). However, there was no statistical difference between the Inception-Resnet-v2 model and the endoscopist with the worst performance in the differentiation of gastric cancer (accuracy 76.0 % vs. 82.0 %) and neoplasm (AUC 0.776 vs. 0.865). Conclusion The evaluated deep-learning models have the potential for clinical application in classifying gastric cancer or neoplasm on endoscopic white-light images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cl发布了新的文献求助10
1秒前
张文静发布了新的文献求助10
2秒前
3秒前
Owen应助Zlq采纳,获得10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
4秒前
Rondab应助科研通管家采纳,获得30
4秒前
恋雅颖月应助科研通管家采纳,获得10
4秒前
4秒前
Rondab应助科研通管家采纳,获得10
4秒前
jfz完成签到,获得积分10
4秒前
李爱国应助yuisl采纳,获得10
7秒前
星辰完成签到,获得积分10
7秒前
CAOHOU应助牛文文采纳,获得10
8秒前
9秒前
9秒前
hxh完成签到 ,获得积分10
10秒前
13秒前
LaFee发布了新的文献求助30
14秒前
小小米发布了新的文献求助10
15秒前
pyrene完成签到 ,获得积分10
16秒前
16秒前
wanci应助七里香采纳,获得10
18秒前
Hhbbb发布了新的文献求助10
18秒前
研友_n0Qa7Z完成签到 ,获得积分10
18秒前
大头完成签到,获得积分10
18秒前
ZPH发布了新的文献求助10
19秒前
20秒前
研友_VZG7GZ应助熠熠采纳,获得10
20秒前
927完成签到,获得积分10
21秒前
整齐的雨发布了新的文献求助10
22秒前
井一完成签到,获得积分10
24秒前
26秒前
莫小烦完成签到,获得积分10
27秒前
cy发布了新的文献求助10
27秒前
阔达棉花糖完成签到 ,获得积分10
27秒前
打打应助小小米采纳,获得10
27秒前
ZPH完成签到,获得积分20
28秒前
李健应助Skuld采纳,获得10
29秒前
杨秀玲发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999295
求助须知:如何正确求助?哪些是违规求助? 3538645
关于积分的说明 11274805
捐赠科研通 3277547
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810090