Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network

医学 卷积神经网络 人工智能 发育不良 癌症 放射科 前瞻性队列研究 残差神经网络 模式识别(心理学) 病理 内科学 计算机科学
作者
Bum-Joo Cho,Chang Seok Bang,Se Woo Park,Young Joo Yang,Seung In Seo,Hyun Lim,Woon Geon Shin,Ji Taek Hong,Yong Tak Yoo,Seok Hwan Hong,Jae Ho Choi,Jae Jun Lee,Gwang Ho Baik
出处
期刊:Endoscopy [Georg Thieme Verlag KG]
卷期号:51 (12): 1121-1129 被引量:92
标识
DOI:10.1055/a-0981-6133
摘要

Abstract Background Visual inspection, lesion detection, and differentiation between malignant and benign features are key aspects of an endoscopist’s role. The use of machine learning for the recognition and differentiation of images has been increasingly adopted in clinical practice. This study aimed to establish convolutional neural network (CNN) models to automatically classify gastric neoplasms based on endoscopic images. Methods Endoscopic white-light images of pathologically confirmed gastric lesions were collected and classified into five categories: advanced gastric cancer, early gastric cancer, high grade dysplasia, low grade dysplasia, and non-neoplasm. Three pretrained CNN models were fine-tuned using a training dataset. The classifying performance of the models was evaluated using a test dataset and a prospective validation dataset. Results A total of 5017 images were collected from 1269 patients, among which 812 images from 212 patients were used as the test dataset. An additional 200 images from 200 patients were collected and used for prospective validation. For the five-category classification, the weighted average accuracy of the Inception-Resnet-v2 model reached 84.6 %. The mean area under the curve (AUC) of the model for differentiating gastric cancer and neoplasm was 0.877 and 0.927, respectively. In prospective validation, the Inception-Resnet-v2 model showed lower performance compared with the endoscopist with the best performance (five-category accuracy 76.4 % vs. 87.6 %; cancer 76.0 % vs. 97.5 %; neoplasm 73.5 % vs. 96.5 %; P < 0.001). However, there was no statistical difference between the Inception-Resnet-v2 model and the endoscopist with the worst performance in the differentiation of gastric cancer (accuracy 76.0 % vs. 82.0 %) and neoplasm (AUC 0.776 vs. 0.865). Conclusion The evaluated deep-learning models have the potential for clinical application in classifying gastric cancer or neoplasm on endoscopic white-light images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
46464完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
Zzzz发布了新的文献求助30
刚刚
1秒前
1秒前
April发布了新的文献求助10
1秒前
完美世界应助常澎钊采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
风趣的忆南完成签到,获得积分10
3秒前
su发布了新的文献求助10
3秒前
3秒前
4秒前
潘升国完成签到 ,获得积分10
4秒前
jsx完成签到,获得积分10
5秒前
KX2024发布了新的文献求助10
6秒前
舒心安柏完成签到 ,获得积分10
7秒前
7秒前
科研mrxu完成签到,获得积分10
7秒前
onmyway完成签到,获得积分10
9秒前
9秒前
gfsuen完成签到 ,获得积分10
10秒前
Orange应助潇洒的书白采纳,获得10
10秒前
英吉利25发布了新的文献求助10
10秒前
12秒前
量子星尘发布了新的文献求助30
12秒前
迟雾完成签到,获得积分10
13秒前
爱吃喜羊羊完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
Hello应助better采纳,获得10
15秒前
16秒前
16秒前
16秒前
CodeCraft应助Larluli采纳,获得10
16秒前
Jasper应助正丁基锂采纳,获得10
16秒前
17秒前
17秒前
xia完成签到,获得积分10
18秒前
哈哈完成签到,获得积分10
18秒前
18秒前
可爱的函函应助优美紫槐采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513