亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpolation of regularly sampled prestack seismic data with self-supervised learning

计算机科学 插值(计算机图形学) 叠前 宽带 任务(项目管理) 卷积神经网络 人工智能 管道(软件) 深度学习 功能(生物学) 监督学习 模式识别(心理学) 人工神经网络 图像(数学) 地质学 地震学 电信 经济 管理 程序设计语言 生物 进化生物学
作者
Suvrajeet Sen,Sribharath Kainkaryam,Cen Ong,Arvind Kumar Sharma
标识
DOI:10.1190/segam2019-3215774.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019Interpolation of regularly sampled prestack seismic data with self-supervised learningAuthors: Satyakee SenSribharath KainkaryamCen OngArvind SharmaSatyakee SenTGSSearch for more papers by this author, Sribharath KainkaryamTGSSearch for more papers by this author, Cen OngTGSSearch for more papers by this author, and Arvind SharmaTGSSearch for more papers by this authorhttps://doi.org/10.1190/segam2019-3215774.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractWe describe a framework for interpolation of broadband, prestack seismic data using a deep learning pipeline trained in a self-supervised manner. Unlike classification or segmentation tasks, image generation with convolutional neural networks (CNNs) is inherently more complex as the networks needs to learn the high dimensional distributions of broadband prestack gathers to be able to accurately reconstruct the missing traces. We highlight two main challenges specific to prestack seismic data for this task: (1) the choice of the loss function and (2) the lack of suitable training data in the form of image-label pairs to cast the problem as a supervised deep learning task. We show that a naïve implementation of standard loss measures like sample-wise L2 or L1 leads to cycle skipping issues at high frequencies and undesirable smoothness in the mid-frequency reconstruction. To resolve this, we use a perceptual loss function computed using a pretrained variational auto-encoder (VAE) that penalizes differences between the interpolated and the input gathers in the high dimensional feature space of these gathers. To account for the lack of high-quality labelled training data we use a self-supervised learning scheme where a generator network is trained to read in random noise and produce the desired super-resolution output.Presentation Date: Monday, September 16, 2019Session Start Time: 1:50 PMPresentation Start Time: 3:55 PMLocation: 214DPresentation Type: OralKeywords: machine learning, interpolation, algorithm, artificial intelligencePermalink: https://doi.org/10.1190/segam2019-3215774.1FiguresReferencesRelatedDetailsCited byRegeneration-Constrained Self-Supervised Seismic Data InterpolationIEEE Transactions on Geoscience and Remote Sensing, Vol. 61Fast hyperparameter-free spectral approach for 2D seismic data reconstruction30 August 2022 | Exploration Geophysics, Vol. 12Seismic Data Reconstruction via Recurrent Residual Multiscale InferenceIEEE Geoscience and Remote Sensing Letters, Vol. 19Attention and Hybrid Loss Guided Deep Learning for Consecutively Missing Seismic Data ReconstructionIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Self-Supervised Learning for Efficient Antialiasing Seismic Data InterpolationIEEE Transactions on Geoscience and Remote Sensing, Vol. 60Self-supervised learning for anti-aliasing seismic data interpolationPengyu Yuan, Shirui Wang, Wenyi Hu, Prashanth Nadukandi, German Ocampo Botero, Xuqing Wu, Jiefu Chen, and Hien Van Nguyen1 September 2021 SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 10 Aug 2019 CITATION INFORMATION Satyakee Sen, Sribharath Kainkaryam, Cen Ong, and Arvind Sharma, (2019), "Interpolation of regularly sampled prestack seismic data with self-supervised learning," SEG Technical Program Expanded Abstracts : 3974-3978. https://doi.org/10.1190/segam2019-3215774.1 Plain-Language Summary Keywordsmachine learninginterpolationalgorithmartificial intelligencePDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助choyng采纳,获得30
7秒前
7秒前
7秒前
今后应助长情黄蜂采纳,获得10
8秒前
10秒前
研友_VZG7GZ应助陶醉的烤鸡采纳,获得10
13秒前
Yesaniar发布了新的文献求助10
13秒前
领导范儿应助科研小白采纳,获得10
13秒前
苏苏弋发布了新的文献求助10
15秒前
17秒前
SciKid524完成签到 ,获得积分10
26秒前
27秒前
刘刘完成签到 ,获得积分10
28秒前
科研小白发布了新的文献求助10
31秒前
42秒前
Qi应助诚心的月光采纳,获得10
44秒前
zhengqisong发布了新的文献求助10
45秒前
47秒前
48秒前
mrcle完成签到,获得积分10
49秒前
桐桐应助zhengqisong采纳,获得10
51秒前
Birdy发布了新的文献求助10
53秒前
miracle1005发布了新的文献求助10
59秒前
1分钟前
英勇新烟完成签到,获得积分10
1分钟前
科研小白发布了新的文献求助10
1分钟前
1分钟前
miracle1005完成签到,获得积分10
1分钟前
1分钟前
轻松的天德完成签到,获得积分20
1分钟前
科研通AI5应助受伤胡萝卜采纳,获得10
1分钟前
Qi应助叫我陈老师啊采纳,获得50
1分钟前
Wang发布了新的文献求助10
1分钟前
1分钟前
李健的小迷弟应助家湘采纳,获得10
1分钟前
1分钟前
1分钟前
易殇发布了新的文献求助30
1分钟前
1分钟前
QQ发布了新的文献求助10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135474
关于积分的说明 9412362
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728442
科研通“疑难数据库(出版商)”最低求助积分说明 716832