生物传感器
甘露糖
细菌
胶粘剂
化学
表面增强拉曼光谱
菌毛
分析化学(期刊)
材料科学
色谱法
拉曼光谱
生物化学
大肠杆菌
生物
有机化学
拉曼散射
光学
物理
基因
遗传学
图层(电子)
作者
Feiyun Cui,Xiaoqun Shen,Bo Cao,Haijie Ji,Jianlei Liu,Xiwei Zhuang,Chijia Zeng,Bin Qu,Shunbo Li,Yi Xu,Qin Zhou
标识
DOI:10.1016/j.bios.2022.114044
摘要
A biosensor integrated with mannose nano-surface was developed for the identification and adhesive strength evaluation of bacteria. Different bacteria were studied on the designed surface by both electrochemical impedance spectroscopy (EIS) and surface enhanced Raman spectroscopy (SERS). S. typhimurium and E. coli JM109 (type 1 pili) were found to be captured by the mannose nano-surface. SERS spectra were used to identify the species of captured bacteria by combing with partial least squares discriminant analysis (PLS-DA). Meanwhile, binding affinities of the two captured bacteria to mannose nano-surface were obtained by EIS measurements and Frumkin isotherm model analysis, which were 6.859 × 1023 M-1 and 2.054 × 1017 M-1 respectively. A higher binding affinity indicates a stronger adhesive strength. Hence the results show the S. typhimurium has a stronger adhesive strength to mannose. Normalized impedance change (NIC) was proved to have a positive relevant relationship with binding affinities, which could be used as an indicator for the adhesive strength of bacteria. It was demonstrated that 100% accuracy of bacteria species discrimination and good consistency of NIC and adhesive strength for blind samples. The developed biosensor can provide both qualitative and quantitative information of selective recognition between bacteria and mannose.
科研通智能强力驱动
Strongly Powered by AbleSci AI