光致发光
材料科学
激光线宽
光电子学
量子产额
卤化物
显色指数
荧光粉
Crystal(编程语言)
发光二极管
发光
光化学
光学
化学
荧光
物理
无机化学
程序设计语言
激光器
计算机科学
作者
Jian-Qiang Zhao,Hui Ge,Yu-Fang Wu,Wenjie Xu,Kai Xu,Jia-Qian Ma,Qianlu Yang,Cheng‐Yang Yue,Xiao‐Wu Lei
标识
DOI:10.1016/j.mtchem.2021.100766
摘要
Highly efficient and narrowband blue light-emitting performance is extremely crucial for the optoelectronic applications of organic-inorganic hybrid perovskites. However, the not yet viable approach has been shown to simultaneously improve photoluminescence quantum yield (PLQY) and narrow linewidth of blue light emission. Herein, a new crystal rigidifying strategy is proposed as a viable dual-optimization avenue. Specifically, we perform a post-synthetic technique on hybrid cadmium halides and successfully convert zero-dimensional (0D) DMP-0-CdBr4 to one-dimensional (1D) DMP-1-CdBr3, accompanied by luminescent transformation from sky-blue (470 nm) to deep-blue (432 nm) emissions. The structural evolution from discrete block to infinite chain significantly enhances the crystal rigidity, which results in narrower emission linewidth (89 to 50 nm) and increased color purity (74.5% to 96.7%). Synchronously, the PLQY also realizes a notable enhancement from 14.0% to 52.3%. Systematical characterizations demonstrate that enhanced crystal rigidity simultaneously weakens the electron-phonon interaction and slows down nonradiative decay, which narrows the emission linewidth and boosts the PLQY. The highly efficient light-emitting performance enables them as excellent down-conversion blue phosphors to fabricate solid-state LED giving bright warm white light with high color rendering index of 95.4. This work paves a novel structural optimization way to rationally design or fine-tune high-performance blue-light emitting halides.
科研通智能强力驱动
Strongly Powered by AbleSci AI