Evolutionary Neural Architecture Search for Automatic Esophageal Lesion Identification and Segmentation

鉴定(生物学) 分割 人工智能 计算机科学 卷积神经网络 人工神经网络 网络体系结构 深度学习 图像分割 模式识别(心理学) 计算机视觉 计算机安全 植物 生物
作者
Yao Zhou,Xianglei Yuan,Xiaozhi Zhang,Wei Liu,Yu Wu,Gary G. Yen,Bing Hu,Yi Zhang
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:3 (3): 436-450 被引量:19
标识
DOI:10.1109/tai.2021.3134600
摘要

Automatic esophageal lesion identification (ESEI) is of great importance to clinically aid the endoscopists with the early detection of esophageal cancer. However, accurate identification of esophageal lesion is challenging due to the varying shape, size, illumination condition, and complex background with artifacts in endoscopic images. Although deep neural network based approaches have considerably boosted the performance by automatically learning features from esophageal images, the configuration of the network architecture is highly dependent on domain expertise and is a daunting task to be manually tuned. In this article, we propose an evolutionary algorithm based approach to search for the optimal multitask network architecture for ESEI. Different from existing studies, we first design a multitask network search space, which considers the lesion identification as two steps including esophageal image classification and esophageal lesion segmentation. In particular, the input image resolution is covered in the search space, and the classification utilizes both downsampled and upsampled features. Besides, to avoid scratch training of sampled network architectures in the evolutionary algorithm, the one-shot supernet strategy is developed for searching the optimal network architecture. Results from the performed experiments on a collected sizeable clinical esophageal image dataset show that the proposed method improves on the state of the art on all measured metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ray完成签到,获得积分10
1秒前
fmd123完成签到,获得积分20
1秒前
我想吃薯条完成签到 ,获得积分10
1秒前
poppysss发布了新的文献求助10
2秒前
可爱的函函应助一把过采纳,获得10
2秒前
UPUP完成签到,获得积分10
3秒前
DDF完成签到 ,获得积分10
3秒前
4秒前
顾矜应助BenQiu采纳,获得10
4秒前
孙福禄应助牛奶秋刀鱼采纳,获得10
5秒前
@@@发布了新的文献求助10
5秒前
Eusha完成签到,获得积分10
6秒前
吴家辉完成签到,获得积分10
6秒前
zhanwenlin完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
8秒前
追寻的问玉完成签到 ,获得积分10
8秒前
博修完成签到,获得积分10
10秒前
上官若男应助冷酷严青采纳,获得10
10秒前
辉夜折影完成签到,获得积分10
11秒前
11秒前
11秒前
hayden发布了新的文献求助10
12秒前
13秒前
tao完成签到 ,获得积分10
13秒前
能能发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助huyuan采纳,获得10
14秒前
共享精神应助深时采纳,获得10
14秒前
永康发布了新的文献求助10
15秒前
BenQiu完成签到,获得积分10
16秒前
16秒前
shirley完成签到,获得积分10
16秒前
高贵路灯发布了新的文献求助10
16秒前
16秒前
neao完成签到 ,获得积分10
18秒前
18秒前
孤独寻云完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582