亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multidirection and Multiscale Pyramid in Transformer for Video-Based Pedestrian Retrieval

计算机科学 棱锥(几何) 变压器 人工智能 计算机视觉 行人 特征提取 特征(语言学) 模式识别(心理学) 工程类 电压 数学 语言学 哲学 几何学 电气工程 运输工程
作者
Xianghao Zang,Ge Li,Wei Gao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (12): 8776-8785 被引量:55
标识
DOI:10.1109/tii.2022.3151766
摘要

In video surveillance, pedestrian retrieval (also called person re-identification) is a critical task. This task aims to retrieve the pedestrian of interest from non-overlapping cameras. Recently, transformer-based models have achieved significant progress for this task. However, these models still suffer from ignoring fine-grained, part-informed information. This paper proposes a multi-direction and multi-scale Pyramid in Transformer (PiT) to solve this problem. In transformer-based architecture, each pedestrian image is split into many patches. Then, these patches are fed to transformer layers to obtain the feature representation of this image. To explore the fine-grained information, this paper proposes to apply vertical division and horizontal division on these patches to generate different-direction human parts. These parts provide more fine-grained information. To fuse multi-scale feature representation, this paper presents a pyramid structure containing global-level information and many pieces of local-level information from different scales. The feature pyramids of all the pedestrian images from the same video are fused to form the final multi-direction and multi-scale feature representation. Experimental results on two challenging video-based benchmarks, MARS and iLIDS-VID, show the proposed PiT achieves state-of-the-art performance. Extensive ablation studies demonstrate the superiority of the proposed pyramid structure. The code is available at https://git.openi.org.cn/zangxh/PiT.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助Ushur采纳,获得10
5秒前
星辰大海应助丽优采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
14秒前
科研通AI2S应助Lambda采纳,获得30
17秒前
17秒前
Ushur发布了新的文献求助10
18秒前
cxwong完成签到 ,获得积分10
20秒前
丽优发布了新的文献求助10
20秒前
29秒前
Ushur完成签到,获得积分10
29秒前
33秒前
老实的电源完成签到,获得积分10
36秒前
研友_ZlPDdZ发布了新的文献求助10
37秒前
研友_ZlPDdZ完成签到,获得积分10
46秒前
勤劳致富完成签到,获得积分20
46秒前
58秒前
丽优发布了新的文献求助10
58秒前
111发布了新的文献求助10
1分钟前
cc完成签到,获得积分10
1分钟前
hgs完成签到,获得积分10
1分钟前
1分钟前
hgsgeospan完成签到,获得积分10
1分钟前
lyw发布了新的文献求助10
1分钟前
CMUSK完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
修辛发布了新的文献求助10
1分钟前
大模型应助lyw采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
chenchen完成签到,获得积分10
2分钟前
镜谢不敏完成签到 ,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426457
求助须知:如何正确求助?哪些是违规求助? 4540200
关于积分的说明 14171843
捐赠科研通 4457954
什么是DOI,文献DOI怎么找? 2444740
邀请新用户注册赠送积分活动 1435785
关于科研通互助平台的介绍 1413229