清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multidirection and Multiscale Pyramid in Transformer for Video-Based Pedestrian Retrieval

计算机科学 棱锥(几何) 变压器 人工智能 计算机视觉 行人 特征提取 特征(语言学) 模式识别(心理学) 工程类 电压 数学 语言学 哲学 几何学 电气工程 运输工程
作者
Xianghao Zang,Ge Li,Wei Gao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (12): 8776-8785 被引量:55
标识
DOI:10.1109/tii.2022.3151766
摘要

In video surveillance, pedestrian retrieval (also called person re-identification) is a critical task. This task aims to retrieve the pedestrian of interest from non-overlapping cameras. Recently, transformer-based models have achieved significant progress for this task. However, these models still suffer from ignoring fine-grained, part-informed information. This paper proposes a multi-direction and multi-scale Pyramid in Transformer (PiT) to solve this problem. In transformer-based architecture, each pedestrian image is split into many patches. Then, these patches are fed to transformer layers to obtain the feature representation of this image. To explore the fine-grained information, this paper proposes to apply vertical division and horizontal division on these patches to generate different-direction human parts. These parts provide more fine-grained information. To fuse multi-scale feature representation, this paper presents a pyramid structure containing global-level information and many pieces of local-level information from different scales. The feature pyramids of all the pedestrian images from the same video are fused to form the final multi-direction and multi-scale feature representation. Experimental results on two challenging video-based benchmarks, MARS and iLIDS-VID, show the proposed PiT achieves state-of-the-art performance. Extensive ablation studies demonstrate the superiority of the proposed pyramid structure. The code is available at https://git.openi.org.cn/zangxh/PiT.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨的怜雪完成签到 ,获得积分10
2秒前
CodeCraft应助水雾采纳,获得10
10秒前
彩色的芷容完成签到 ,获得积分10
22秒前
平常以云完成签到 ,获得积分10
24秒前
鲤鱼山人完成签到 ,获得积分10
32秒前
41秒前
水雾发布了新的文献求助10
46秒前
tt完成签到,获得积分10
1分钟前
Fairy完成签到,获得积分10
1分钟前
鹏程万里完成签到,获得积分10
2分钟前
暗号完成签到 ,获得积分0
2分钟前
LJJ完成签到,获得积分10
2分钟前
慕青应助研友_8RyzBZ采纳,获得10
3分钟前
ljl86400完成签到,获得积分10
3分钟前
3分钟前
研友_8RyzBZ发布了新的文献求助10
3分钟前
科研通AI6应助阳光的星月采纳,获得10
4分钟前
大个应助研友_8RyzBZ采纳,获得10
4分钟前
5分钟前
研友_8RyzBZ发布了新的文献求助10
5分钟前
123应助研友_8RyzBZ采纳,获得10
5分钟前
赘婿应助阳光的星月采纳,获得10
5分钟前
外向的妍完成签到,获得积分10
5分钟前
6分钟前
娟子完成签到,获得积分10
6分钟前
6分钟前
lsl应助Atopos采纳,获得30
7分钟前
Criminology34应助Atopos采纳,获得10
7分钟前
8分钟前
8分钟前
8分钟前
嘟嘟完成签到 ,获得积分10
8分钟前
Aray完成签到 ,获得积分10
9分钟前
taster完成签到,获得积分10
9分钟前
10分钟前
光亮静槐完成签到 ,获得积分10
10分钟前
10分钟前
SilverPlane发布了新的文献求助10
10分钟前
SilverPlane完成签到,获得积分10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635162
求助须知:如何正确求助?哪些是违规求助? 4735022
关于积分的说明 14989826
捐赠科研通 4792862
什么是DOI,文献DOI怎么找? 2559967
邀请新用户注册赠送积分活动 1520215
关于科研通互助平台的介绍 1480311