亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multidirection and Multiscale Pyramid in Transformer for Video-Based Pedestrian Retrieval

计算机科学 棱锥(几何) 变压器 人工智能 计算机视觉 行人 特征提取 特征(语言学) 模式识别(心理学) 工程类 电压 数学 语言学 哲学 几何学 电气工程 运输工程
作者
Xianghao Zang,Ge Li,Wei Gao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (12): 8776-8785 被引量:55
标识
DOI:10.1109/tii.2022.3151766
摘要

In video surveillance, pedestrian retrieval (also called person re-identification) is a critical task. This task aims to retrieve the pedestrian of interest from non-overlapping cameras. Recently, transformer-based models have achieved significant progress for this task. However, these models still suffer from ignoring fine-grained, part-informed information. This paper proposes a multi-direction and multi-scale Pyramid in Transformer (PiT) to solve this problem. In transformer-based architecture, each pedestrian image is split into many patches. Then, these patches are fed to transformer layers to obtain the feature representation of this image. To explore the fine-grained information, this paper proposes to apply vertical division and horizontal division on these patches to generate different-direction human parts. These parts provide more fine-grained information. To fuse multi-scale feature representation, this paper presents a pyramid structure containing global-level information and many pieces of local-level information from different scales. The feature pyramids of all the pedestrian images from the same video are fused to form the final multi-direction and multi-scale feature representation. Experimental results on two challenging video-based benchmarks, MARS and iLIDS-VID, show the proposed PiT achieves state-of-the-art performance. Extensive ablation studies demonstrate the superiority of the proposed pyramid structure. The code is available at https://git.openi.org.cn/zangxh/PiT.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
量子星尘发布了新的文献求助10
25秒前
是真的完成签到 ,获得积分10
1分钟前
852应助sujinyu采纳,获得10
1分钟前
1分钟前
1分钟前
sujinyu发布了新的文献求助10
1分钟前
xmsyq完成签到 ,获得积分10
2分钟前
小丑鱼儿完成签到 ,获得积分10
2分钟前
得咎完成签到 ,获得积分10
2分钟前
bjcyqz完成签到,获得积分10
3分钟前
3分钟前
fdu_sf发布了新的文献求助10
3分钟前
情怀应助fdu_sf采纳,获得10
4分钟前
Hvginn完成签到,获得积分10
4分钟前
catherine完成签到,获得积分10
5分钟前
Lighters完成签到 ,获得积分10
5分钟前
5分钟前
电量过低完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
CodeCraft应助lei采纳,获得10
5分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
lei发布了新的文献求助10
6分钟前
鲜橙完成签到 ,获得积分10
6分钟前
7分钟前
早茶可口完成签到,获得积分10
7分钟前
爆米花应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
英姑应助xingsixs采纳,获得10
8分钟前
8分钟前
研友发布了新的文献求助10
8分钟前
情怀应助欣喜面包采纳,获得10
8分钟前
斯文败类应助研友采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780506
求助须知:如何正确求助?哪些是违规求助? 5656754
关于积分的说明 15453250
捐赠科研通 4911100
什么是DOI,文献DOI怎么找? 2643307
邀请新用户注册赠送积分活动 1590976
关于科研通互助平台的介绍 1545479