Multidirection and Multiscale Pyramid in Transformer for Video-Based Pedestrian Retrieval

计算机科学 棱锥(几何) 变压器 人工智能 计算机视觉 行人 特征提取 特征(语言学) 模式识别(心理学) 工程类 电压 数学 语言学 哲学 几何学 电气工程 运输工程
作者
Xianghao Zang,Ge Li,Wei Gao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (12): 8776-8785 被引量:55
标识
DOI:10.1109/tii.2022.3151766
摘要

In video surveillance, pedestrian retrieval (also called person re-identification) is a critical task. This task aims to retrieve the pedestrian of interest from non-overlapping cameras. Recently, transformer-based models have achieved significant progress for this task. However, these models still suffer from ignoring fine-grained, part-informed information. This paper proposes a multi-direction and multi-scale Pyramid in Transformer (PiT) to solve this problem. In transformer-based architecture, each pedestrian image is split into many patches. Then, these patches are fed to transformer layers to obtain the feature representation of this image. To explore the fine-grained information, this paper proposes to apply vertical division and horizontal division on these patches to generate different-direction human parts. These parts provide more fine-grained information. To fuse multi-scale feature representation, this paper presents a pyramid structure containing global-level information and many pieces of local-level information from different scales. The feature pyramids of all the pedestrian images from the same video are fused to form the final multi-direction and multi-scale feature representation. Experimental results on two challenging video-based benchmarks, MARS and iLIDS-VID, show the proposed PiT achieves state-of-the-art performance. Extensive ablation studies demonstrate the superiority of the proposed pyramid structure. The code is available at https://git.openi.org.cn/zangxh/PiT.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孤独的紫萍完成签到,获得积分20
1秒前
JoaquinH发布了新的文献求助10
1秒前
英吉利25发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
ding应助核桃采纳,获得10
1秒前
科研通AI6应助核桃采纳,获得10
1秒前
FashionBoy应助核桃采纳,获得10
1秒前
搜集达人应助核桃采纳,获得10
1秒前
2秒前
小二郎应助核桃采纳,获得10
2秒前
顾矜应助核桃采纳,获得10
2秒前
彭于晏应助核桃采纳,获得30
2秒前
桐桐应助核桃采纳,获得10
2秒前
科研通AI6应助核桃采纳,获得10
2秒前
科研通AI6应助核桃采纳,获得10
2秒前
甜甜完成签到 ,获得积分10
2秒前
慕青应助Rainbow采纳,获得30
2秒前
wanci应助HRB采纳,获得10
3秒前
情怀应助迟来的内啡肽采纳,获得10
3秒前
酷波er应助猪猪hero采纳,获得30
4秒前
4秒前
Erdong_chen发布了新的文献求助10
5秒前
宋鸣鸣发布了新的文献求助10
6秒前
6秒前
6秒前
萧东辰完成签到,获得积分10
6秒前
别拿暗恋当饭吃完成签到 ,获得积分10
6秒前
rain123发布了新的文献求助10
6秒前
鹿白柏发布了新的文献求助10
6秒前
0.0.123发布了新的文献求助10
7秒前
7秒前
7秒前
Lees完成签到,获得积分10
7秒前
仁爱小松鼠完成签到,获得积分20
8秒前
8秒前
27发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505397
求助须知:如何正确求助?哪些是违规求助? 4600897
关于积分的说明 14474868
捐赠科研通 4535091
什么是DOI,文献DOI怎么找? 2485112
邀请新用户注册赠送积分活动 1468204
关于科研通互助平台的介绍 1440675