计算机科学
人工神经网络
反向传播
准确度和精密度
探测器
偏移量(计算机科学)
算法
人工智能
数据挖掘
统计
数学
电信
程序设计语言
作者
Zhaobing Qiu,Weihao Jia,Xiao Ma,Bohao Zou,Liyu Lin
出处
期刊:Applied Optics
[The Optical Society]
日期:2021-11-24
卷期号:61 (9): F9-F9
被引量:16
摘要
Due to the high accuracy and fast response, measurement systems based on four-quadrant detectors (4QDs) are widely used. There is a non-linear relationship between the output signal offset (OSO) of the 4QD and the actual spot position, resulting in limited measurement accuracy. Existing methods improve detection accuracy by collecting large amounts of data and approximating the OSO curve. On one hand, they require much difficult-to-obtain real data; on the other hand, the accuracy of the fit using specific functions is limited. To address this issue, this paper proposes a neural-network-based method for improving the measurement accuracy of 4QDs. Compared to existing methods, the proposed method significantly improves measurement accuracy with a small amount of real data. To obtain sufficient data to train the neural network, we first propose a method for generating large amounts of high-precision simulation data. Then, specifically for the 4QD-based measurement system, we construct a backpropagation neural network. Finally, based on a large amount of simulation data and a small amount of real data, we design a new training strategy to train a high-precision measurement network. The experimental results show that the proposed method can significantly improve measurement accuracy with less real data and has extensive application value.
科研通智能强力驱动
Strongly Powered by AbleSci AI