HGDTI: predicting drug–target interaction by using information aggregation based on heterogeneous graph neural network

计算机科学 异构网络 人工神经网络 稳健性(进化) 图嵌入 嵌入 机器学习 图形 数据挖掘 人工智能 交互网络 理论计算机科学 无线网络 无线 化学 基因 电信 生物化学
作者
Liyi Yu,Wang-Ren Qiu,Wei-Zhong Lin,Xiang Cheng,Xuan Xiao,Jiexia Dai
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:23 (1) 被引量:5
标识
DOI:10.1186/s12859-022-04655-5
摘要

In research on new drug discovery, the traditional wet experiment has a long period. Predicting drug-target interaction (DTI) in silico can greatly narrow the scope of search of candidate medications. Excellent algorithm model may be more effective in revealing the potential connection between drug and target in the bioinformatics network composed of drugs, proteins and other related data.In this work, we have developed a heterogeneous graph neural network model, named as HGDTI, which includes a learning phase of network node embedding and a training phase of DTI classification. This method first obtains the molecular fingerprint information of drugs and the pseudo amino acid composition information of proteins, then extracts the initial features of nodes through Bi-LSTM, and uses the attention mechanism to aggregate heterogeneous neighbors. In several comparative experiments, the overall performance of HGDTI significantly outperforms other state-of-the-art DTI prediction models, and the negative sampling technology is employed to further optimize the prediction power of model. In addition, we have proved the robustness of HGDTI through heterogeneous network content reduction tests, and proved the rationality of HGDTI through other comparative experiments. These results indicate that HGDTI can utilize heterogeneous information to capture the embedding of drugs and targets, and provide assistance for drug development.The HGDTI based on heterogeneous graph neural network model, can utilize heterogeneous information to capture the embedding of drugs and targets, and provide assistance for drug development. For the convenience of related researchers, a user-friendly web-server has been established at http://bioinfo.jcu.edu.cn/hgdti .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵的裘发布了新的文献求助10
刚刚
1秒前
3秒前
打打应助yincy采纳,获得20
4秒前
小马甲应助清新的Q采纳,获得10
4秒前
coke完成签到,获得积分10
4秒前
逻辑猫完成签到,获得积分10
5秒前
Akim应助图图烤肉采纳,获得10
5秒前
幽深绿藤完成签到,获得积分20
6秒前
6秒前
调皮万宝路完成签到,获得积分10
7秒前
lcdamoy发布了新的文献求助10
7秒前
jason完成签到 ,获得积分10
7秒前
11秒前
里予完成签到,获得积分10
11秒前
12秒前
科研通AI2S应助荆轲刺秦王采纳,获得10
12秒前
激昂的又琴完成签到,获得积分10
12秒前
13秒前
积极的笙发布了新的文献求助10
14秒前
14秒前
14秒前
淡然的糖豆完成签到 ,获得积分10
14秒前
15秒前
sunn完成签到,获得积分10
16秒前
清新的Q发布了新的文献求助10
16秒前
科目三应助安然采纳,获得10
16秒前
17秒前
abc完成签到 ,获得积分10
17秒前
司空豁发布了新的文献求助10
17秒前
样样子发布了新的文献求助10
18秒前
18秒前
TALE发布了新的文献求助10
18秒前
awwwer发布了新的文献求助10
19秒前
萧水白应助小陈爱科研采纳,获得10
19秒前
LY0430发布了新的文献求助10
19秒前
轻松小张完成签到,获得积分0
20秒前
21秒前
21秒前
乐乐应助bobo采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502587
关于积分的说明 11108917
捐赠科研通 3233359
什么是DOI,文献DOI怎么找? 1787265
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122