草原
环境科学
生物量(生态学)
生长季节
空间分布
自然地理学
生态学
地理
遥感
生物
作者
J. Ge,Mengjing Hou,Tiangang Liang,Qisheng Feng,Xinyue Meng,Jie Liu,Xuying Bao,Hongyuan Gao
标识
DOI:10.1016/j.scitotenv.2022.154226
摘要
Although remote sensing has enabled rapid monitoring of grassland aboveground biomass (AGB) at a regional scale, it is still a difficult challenge to construct an accurate estimation model of grassland AGB in a vast region to support the AGB dynamics analysis over a long time series. In this study, extensive grassland AGB measurements (collected in North China during the grassland growing season of 2000-2019), MODIS data, and environmental factors (climate, topography and soil) were employed to construct the grassland AGB models using four machine learning algorithms (random forest, support vector machine, artificial neural network and extreme learning machine) combined with four variable selections. The spatial distributions of annual grassland AGB from 2000 to 2019 were simulated based on the optimal AGB model. The temporal change and future trend of AGB series from 2000 to 2019 were comprehensively analyzed by the slope model and Hurst exponent. The influences of natural and anthropogenic factors on grassland AGB dynamics were explored quantitatively using the Geodetector model. The results showed that (1) the random forest model constructed from the variables selected by the successive projections algorithm is the optimal grassland AGB model. (2) The 20-year average grassland AGB in North China showed an overall spatial distribution of being low in the central and western parts and high in the southeastern part. (3) The annual maximum grassland AGB in most regions (82.71%) showed an increasing trend during 2000-2019; and most of the grasslands with a decreasing trend of AGB were located in regions with low AGB values and arid climates. (4) The future trend of grassland AGB after the study period may be optimistic, as reflected by more grassland AGB was predicted to increase rather than decrease (70.38% vs. 29.62%). (5) The main driving factors of spatiotemporal dynamics of grassland AGB were precipitation, soil type, and livestock density; the interactive influence of two drivers on AGB showed mutual enhancement.
科研通智能强力驱动
Strongly Powered by AbleSci AI