光催化
欧姆接触
光电流
材料科学
光致发光
光电子学
三乙醇胺
纳米技术
光化学
分析化学(期刊)
化学
催化作用
有机化学
图层(电子)
作者
Huiqin Wang,Haopeng Jiang,Huijie Wang,Qi Liu,Pengwei Huo
标识
DOI:10.1002/ente.202101158
摘要
Improved photogenerated carrier separation efficiency is of importance for improving photocatalytic activity. Herein, the photocatalytic CO 2 reduction of a 3D/0D ZnIn 2 S 4 /NiS ohmic‐junction photocatalyst under simulated sunlight is studied. The ZnIn 2 S 4 –2%NiS sample has the best excellent photoreduction CO 2 performance facilitated by triethanolamine (TEOA) reagents, the ZnIn 2 S 4 –2%NiS sample with a CO yield of 12.63 μmol g −1 h −1 , which is two times that for pure ZnIn 2 S 4 (6.37 μmol g −1 h −1 ). It is demonstrated that NiS nanoparticles not only improve the efficiency of electron generation and charge separation by constructing a tight contact ohmic‐junction, but also act as a cocatalyst to extend the photoreaction range and lower the reaction barrier, which effectively accelerates the photocatalytic reduction reaction. Additionally, the 3D structure of ZnIn 2 S 4 has an excellent specific surface area that facilitates the dispersion of NiS. The generation, separation, and migration of photogenerated electron holes are studied from the kinetics perspective through transient photocurrent response, linear sweep voltammetry curve and photoluminescence spectroscopy. In situ Fourier transform infrared spectroscopy is applied to study the CO 2 photoreduction process. Herein, the important role of cocatalyst and ohmic‐junction in improving photocatalytic activity is revealed and a new idea for the construction of efficient photocatalysts is provided.
科研通智能强力驱动
Strongly Powered by AbleSci AI