Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma

拉曼光谱 线性判别分析 人工智能 主成分分析 支持向量机 食管鳞状细胞癌 机器学习 医学 肿瘤科 癌症 内科学 计算机科学 物理 光学
作者
Wenhua Huang,Qi‐Xin Shang,Xin Xiao,Hanlu Zhang,Yi‐Min Gu,Lin Yang,Guidong Shi,Yu‐Shang Yang,Hu Yang,Yong Yuan,Aifang Ji,Longqi Chen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:281: 121654-121654 被引量:25
标识
DOI:10.1016/j.saa.2022.121654
摘要

Early diagnosis of esophageal squamous cell carcinoma (ESCC), a common malignant tumor with a low overall survival rate due to metastasis and recurrence, is critical for effective treatment and improved prognosis. Raman spectroscopy, an advanced detection technology for esophageal cancer, was developed to improve diagnosis sensitivity, specificity, and accuracy. This study proposed a novel, effective, and noninvasive Raman spectroscopy technique to differentiate and classify ESCC cell lines. Seven ESCC cell lines and tissues of an ESCC patient with staging of T3N1M0 and T3N2M0 at low and high differentiation levels were investigated through Raman spectroscopy. Raman spectral data analysis was performed with four machine learning algorithms, namely principal components analysis (PCA)- linear discriminant analysis (LDA), PCA-eXtreme gradient boosting (XGB), PCA- support vector machine (SVM), and PCA- (LDA, XGB, SVM)-stacked Gradient Boosting Machine (GBM). Four machine learning algorithms were able to classifiy ESCC cell subtypes from normal esophageal cells. The PCA-XGB model achieved an overall predictive accuracy of 85% for classifying ESCC and adjacent tissues. Moreover, an overall predictive accuracy of 90.3% was achieved in distinguishing low differentiation and high differentiation ESCC tissues with the same stage when PCA-LDA, XGM, and SVM models were combined. This study illustrated the Raman spectral traits of ESCC cell lines and esophageal tissues related to clinical pathological diagnosis. Future studies should investigate the role of Raman spectral features in ESCC pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZOLEI完成签到,获得积分10
刚刚
1秒前
超级万声发布了新的文献求助30
1秒前
执着蓝发布了新的文献求助10
1秒前
迷路巧曼完成签到,获得积分20
2秒前
害羞鬼发布了新的文献求助10
3秒前
3秒前
Giannis完成签到,获得积分20
4秒前
超级翠完成签到,获得积分10
4秒前
hzl发布了新的文献求助10
4秒前
4秒前
Aprilapple发布了新的文献求助10
4秒前
嘎嘎发布了新的文献求助20
5秒前
Echo_枕星完成签到 ,获得积分10
5秒前
直率路人完成签到,获得积分10
5秒前
5秒前
6秒前
王宽宽宽发布了新的文献求助10
6秒前
ko1完成签到 ,获得积分10
6秒前
西西发布了新的文献求助10
6秒前
奶油果泥完成签到,获得积分10
7秒前
Akim应助苦苦采纳,获得10
7秒前
科研通AI6应助瞿琼瑶采纳,获得10
7秒前
毛果完成签到,获得积分10
8秒前
一点发布了新的文献求助20
8秒前
keyanrubbish发布了新的文献求助10
8秒前
天晴完成签到,获得积分10
8秒前
buno应助酷波zai采纳,获得10
8秒前
9秒前
烂漫耳机完成签到,获得积分10
10秒前
木槿完成签到,获得积分10
10秒前
科研通AI6应助王志新采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
子车茗应助科研通管家采纳,获得30
11秒前
柏林寒冬应助科研通管家采纳,获得10
11秒前
11秒前
活力忆雪应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836