Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma

拉曼光谱 线性判别分析 人工智能 主成分分析 支持向量机 食管鳞状细胞癌 机器学习 医学 肿瘤科 癌症 内科学 计算机科学 物理 光学
作者
Wenhua Huang,Qi‐Xin Shang,Xin Xiao,Hanlu Zhang,Yi‐Min Gu,Lin Yang,Guidong Shi,Yu‐Shang Yang,Hu Yang,Yong Yuan,Aifang Ji,Longqi Chen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:281: 121654-121654 被引量:25
标识
DOI:10.1016/j.saa.2022.121654
摘要

Early diagnosis of esophageal squamous cell carcinoma (ESCC), a common malignant tumor with a low overall survival rate due to metastasis and recurrence, is critical for effective treatment and improved prognosis. Raman spectroscopy, an advanced detection technology for esophageal cancer, was developed to improve diagnosis sensitivity, specificity, and accuracy. This study proposed a novel, effective, and noninvasive Raman spectroscopy technique to differentiate and classify ESCC cell lines. Seven ESCC cell lines and tissues of an ESCC patient with staging of T3N1M0 and T3N2M0 at low and high differentiation levels were investigated through Raman spectroscopy. Raman spectral data analysis was performed with four machine learning algorithms, namely principal components analysis (PCA)- linear discriminant analysis (LDA), PCA-eXtreme gradient boosting (XGB), PCA- support vector machine (SVM), and PCA- (LDA, XGB, SVM)-stacked Gradient Boosting Machine (GBM). Four machine learning algorithms were able to classifiy ESCC cell subtypes from normal esophageal cells. The PCA-XGB model achieved an overall predictive accuracy of 85% for classifying ESCC and adjacent tissues. Moreover, an overall predictive accuracy of 90.3% was achieved in distinguishing low differentiation and high differentiation ESCC tissues with the same stage when PCA-LDA, XGM, and SVM models were combined. This study illustrated the Raman spectral traits of ESCC cell lines and esophageal tissues related to clinical pathological diagnosis. Future studies should investigate the role of Raman spectral features in ESCC pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕容冰璃完成签到,获得积分10
1秒前
drtianyunhong完成签到,获得积分10
1秒前
笑傲江湖完成签到,获得积分10
2秒前
jjy完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
鲲鹏完成签到 ,获得积分10
12秒前
悠米爱吃图奇完成签到 ,获得积分10
14秒前
康轲完成签到,获得积分10
15秒前
一只半夏完成签到,获得积分10
17秒前
17秒前
wind完成签到 ,获得积分10
18秒前
风信子deon01完成签到,获得积分10
19秒前
小徐完成签到 ,获得积分10
21秒前
ING发布了新的文献求助10
22秒前
红烧肉耶完成签到 ,获得积分10
23秒前
平淡冬亦完成签到 ,获得积分10
23秒前
烟花应助ceeray23采纳,获得20
24秒前
b不为谁而作的歌完成签到,获得积分10
26秒前
xqh完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
JUAN完成签到,获得积分10
32秒前
看文献完成签到,获得积分10
36秒前
QCB完成签到 ,获得积分10
37秒前
Tysonqu完成签到,获得积分10
43秒前
roy_chiang完成签到,获得积分0
44秒前
李健应助wangsiyuan采纳,获得10
45秒前
量子星尘发布了新的文献求助10
47秒前
48秒前
友好灵阳完成签到 ,获得积分10
50秒前
50秒前
传奇3应助阿米尔盼盼采纳,获得30
51秒前
53秒前
齐不正发布了新的文献求助20
54秒前
Zhangfu完成签到,获得积分10
54秒前
小二郎应助彭晓雅采纳,获得20
54秒前
56秒前
兰花二狗他爹完成签到,获得积分10
56秒前
老程完成签到,获得积分10
57秒前
研友_VZG7GZ应助ceeray23采纳,获得30
58秒前
宁闲尘完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516462
求助须知:如何正确求助?哪些是违规求助? 4609379
关于积分的说明 14514921
捐赠科研通 4546060
什么是DOI,文献DOI怎么找? 2491063
邀请新用户注册赠送积分活动 1472853
关于科研通互助平台的介绍 1444769