Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma

拉曼光谱 线性判别分析 人工智能 主成分分析 支持向量机 食管鳞状细胞癌 机器学习 医学 肿瘤科 癌症 内科学 计算机科学 物理 光学
作者
Wenhua Huang,Qi‐Xin Shang,Xin Xiao,Hanlu Zhang,Yi‐Min Gu,Lin Yang,Guidong Shi,Yu‐Shang Yang,Hu Yang,Yong Yuan,Aifang Ji,Longqi Chen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:281: 121654-121654 被引量:21
标识
DOI:10.1016/j.saa.2022.121654
摘要

Early diagnosis of esophageal squamous cell carcinoma (ESCC), a common malignant tumor with a low overall survival rate due to metastasis and recurrence, is critical for effective treatment and improved prognosis. Raman spectroscopy, an advanced detection technology for esophageal cancer, was developed to improve diagnosis sensitivity, specificity, and accuracy. This study proposed a novel, effective, and noninvasive Raman spectroscopy technique to differentiate and classify ESCC cell lines. Seven ESCC cell lines and tissues of an ESCC patient with staging of T3N1M0 and T3N2M0 at low and high differentiation levels were investigated through Raman spectroscopy. Raman spectral data analysis was performed with four machine learning algorithms, namely principal components analysis (PCA)- linear discriminant analysis (LDA), PCA-eXtreme gradient boosting (XGB), PCA- support vector machine (SVM), and PCA- (LDA, XGB, SVM)-stacked Gradient Boosting Machine (GBM). Four machine learning algorithms were able to classifiy ESCC cell subtypes from normal esophageal cells. The PCA-XGB model achieved an overall predictive accuracy of 85% for classifying ESCC and adjacent tissues. Moreover, an overall predictive accuracy of 90.3% was achieved in distinguishing low differentiation and high differentiation ESCC tissues with the same stage when PCA-LDA, XGM, and SVM models were combined. This study illustrated the Raman spectral traits of ESCC cell lines and esophageal tissues related to clinical pathological diagnosis. Future studies should investigate the role of Raman spectral features in ESCC pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123完成签到,获得积分10
2秒前
莫茹发布了新的文献求助10
2秒前
3秒前
3秒前
天行马完成签到,获得积分10
4秒前
传奇3应助LC采纳,获得10
5秒前
文天发布了新的文献求助10
5秒前
wanci应助张利双采纳,获得10
7秒前
甜美帅哥完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
11秒前
染东完成签到,获得积分10
12秒前
xiaoxiao完成签到,获得积分10
13秒前
李一来发布了新的文献求助30
14秒前
16秒前
Kin发布了新的文献求助20
17秒前
18秒前
英俊的铭应助顺顺顺顺采纳,获得30
18秒前
19秒前
情怀应助Hector采纳,获得10
21秒前
ning发布了新的文献求助10
22秒前
Sunnut发布了新的文献求助10
24秒前
DH完成签到 ,获得积分10
24秒前
伯赏人杰发布了新的文献求助10
24秒前
25秒前
英俊的铭应助乘风的法袍采纳,获得10
25秒前
领导范儿应助莫茹采纳,获得10
28秒前
Sunnut完成签到,获得积分10
29秒前
丘比特应助ZM采纳,获得10
29秒前
30秒前
30秒前
Rondab应助萱萱采纳,获得10
31秒前
pkm8900完成签到,获得积分10
32秒前
SunXinwei完成签到,获得积分10
32秒前
家迎松发布了新的文献求助30
35秒前
kytm发布了新的文献求助10
36秒前
36秒前
37秒前
李一来完成签到,获得积分20
38秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962898
求助须知:如何正确求助?哪些是违规求助? 3508858
关于积分的说明 11143641
捐赠科研通 3241777
什么是DOI,文献DOI怎么找? 1791659
邀请新用户注册赠送积分活动 873063
科研通“疑难数据库(出版商)”最低求助积分说明 803579