Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma

拉曼光谱 线性判别分析 人工智能 主成分分析 支持向量机 食管鳞状细胞癌 机器学习 医学 肿瘤科 癌症 内科学 计算机科学 物理 光学
作者
Wenhua Huang,Qi‐Xin Shang,Xin Xiao,Hanlu Zhang,Yi‐Min Gu,Lin Yang,Guidong Shi,Yu‐Shang Yang,Hu Yang,Yong Yuan,Aifang Ji,Longqi Chen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:281: 121654-121654 被引量:25
标识
DOI:10.1016/j.saa.2022.121654
摘要

Early diagnosis of esophageal squamous cell carcinoma (ESCC), a common malignant tumor with a low overall survival rate due to metastasis and recurrence, is critical for effective treatment and improved prognosis. Raman spectroscopy, an advanced detection technology for esophageal cancer, was developed to improve diagnosis sensitivity, specificity, and accuracy. This study proposed a novel, effective, and noninvasive Raman spectroscopy technique to differentiate and classify ESCC cell lines. Seven ESCC cell lines and tissues of an ESCC patient with staging of T3N1M0 and T3N2M0 at low and high differentiation levels were investigated through Raman spectroscopy. Raman spectral data analysis was performed with four machine learning algorithms, namely principal components analysis (PCA)- linear discriminant analysis (LDA), PCA-eXtreme gradient boosting (XGB), PCA- support vector machine (SVM), and PCA- (LDA, XGB, SVM)-stacked Gradient Boosting Machine (GBM). Four machine learning algorithms were able to classifiy ESCC cell subtypes from normal esophageal cells. The PCA-XGB model achieved an overall predictive accuracy of 85% for classifying ESCC and adjacent tissues. Moreover, an overall predictive accuracy of 90.3% was achieved in distinguishing low differentiation and high differentiation ESCC tissues with the same stage when PCA-LDA, XGM, and SVM models were combined. This study illustrated the Raman spectral traits of ESCC cell lines and esophageal tissues related to clinical pathological diagnosis. Future studies should investigate the role of Raman spectral features in ESCC pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小麦发布了新的文献求助10
刚刚
123完成签到,获得积分10
1秒前
1111发布了新的文献求助10
2秒前
生信狗发布了新的文献求助10
2秒前
小旭不会飞完成签到,获得积分10
2秒前
善学以致用应助馨雨清滢采纳,获得10
2秒前
时尚寻芹发布了新的文献求助10
3秒前
Ll发布了新的文献求助10
4秒前
4秒前
科研通AI6应助爸爸采纳,获得10
4秒前
科研欢欢鱼完成签到,获得积分10
4秒前
跳不起来的大神完成签到 ,获得积分10
5秒前
优美曲奇完成签到,获得积分10
6秒前
7秒前
俭朴听双完成签到,获得积分10
8秒前
花花的奇妙冒险完成签到 ,获得积分10
8秒前
66完成签到,获得积分10
8秒前
bkagyin应助苗儿采纳,获得10
11秒前
JayWu完成签到,获得积分10
11秒前
科研通AI2S应助恩禮采纳,获得10
11秒前
ding应助xh采纳,获得10
13秒前
14秒前
aging00发布了新的文献求助10
14秒前
14秒前
赵蕴章完成签到,获得积分20
14秒前
量子星尘发布了新的文献求助10
15秒前
1111发布了新的文献求助10
15秒前
CodeCraft应助淳于越泽采纳,获得10
17秒前
17秒前
阿飞关注了科研通微信公众号
17秒前
zhuang完成签到 ,获得积分10
18秒前
852应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得30
18秒前
One应助科研通管家采纳,获得10
18秒前
Owen应助hibye采纳,获得10
18秒前
英姑应助科研通管家采纳,获得30
18秒前
shhoing应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545351
求助须知:如何正确求助?哪些是违规求助? 4631357
关于积分的说明 14620547
捐赠科研通 4573019
什么是DOI,文献DOI怎么找? 2507284
邀请新用户注册赠送积分活动 1484116
关于科研通互助平台的介绍 1455352