Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma

拉曼光谱 线性判别分析 人工智能 主成分分析 支持向量机 食管鳞状细胞癌 机器学习 医学 肿瘤科 癌症 内科学 计算机科学 物理 光学
作者
Wenhua Huang,Qi‐Xin Shang,Xin Xiao,Hanlu Zhang,Yi‐Min Gu,Lin Yang,Guidong Shi,Yu‐Shang Yang,Hu Yang,Yong Yuan,Aifang Ji,Longqi Chen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:281: 121654-121654 被引量:25
标识
DOI:10.1016/j.saa.2022.121654
摘要

Early diagnosis of esophageal squamous cell carcinoma (ESCC), a common malignant tumor with a low overall survival rate due to metastasis and recurrence, is critical for effective treatment and improved prognosis. Raman spectroscopy, an advanced detection technology for esophageal cancer, was developed to improve diagnosis sensitivity, specificity, and accuracy. This study proposed a novel, effective, and noninvasive Raman spectroscopy technique to differentiate and classify ESCC cell lines. Seven ESCC cell lines and tissues of an ESCC patient with staging of T3N1M0 and T3N2M0 at low and high differentiation levels were investigated through Raman spectroscopy. Raman spectral data analysis was performed with four machine learning algorithms, namely principal components analysis (PCA)- linear discriminant analysis (LDA), PCA-eXtreme gradient boosting (XGB), PCA- support vector machine (SVM), and PCA- (LDA, XGB, SVM)-stacked Gradient Boosting Machine (GBM). Four machine learning algorithms were able to classifiy ESCC cell subtypes from normal esophageal cells. The PCA-XGB model achieved an overall predictive accuracy of 85% for classifying ESCC and adjacent tissues. Moreover, an overall predictive accuracy of 90.3% was achieved in distinguishing low differentiation and high differentiation ESCC tissues with the same stage when PCA-LDA, XGM, and SVM models were combined. This study illustrated the Raman spectral traits of ESCC cell lines and esophageal tissues related to clinical pathological diagnosis. Future studies should investigate the role of Raman spectral features in ESCC pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hdn完成签到,获得积分10
1秒前
曾无忧发布了新的文献求助10
1秒前
举个栗子8完成签到,获得积分10
1秒前
666y完成签到,获得积分10
1秒前
2秒前
大香蕉发布了新的文献求助10
2秒前
尊敬凝荷完成签到,获得积分10
2秒前
einspringen发布了新的文献求助10
2秒前
youknowdcf发布了新的文献求助10
3秒前
小蜻蜓完成签到,获得积分10
3秒前
粗心的忆山完成签到 ,获得积分10
3秒前
00发布了新的文献求助10
3秒前
薯条派完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
常裤子完成签到,获得积分10
4秒前
神勇友灵完成签到,获得积分0
4秒前
Zhijiuz完成签到,获得积分10
5秒前
留白完成签到 ,获得积分10
5秒前
winwin完成签到,获得积分10
5秒前
呀呀呀完成签到,获得积分10
5秒前
大肉猪完成签到,获得积分10
6秒前
今日无事发布了新的文献求助10
6秒前
丰富的高山完成签到,获得积分10
6秒前
泡泡完成签到,获得积分10
7秒前
7秒前
你好完成签到,获得积分20
7秒前
7秒前
zy发布了新的文献求助10
7秒前
cenghao应助吭哧吭哧采纳,获得10
7秒前
jianguo完成签到,获得积分10
7秒前
薯条派发布了新的文献求助10
8秒前
einspringen完成签到,获得积分10
8秒前
华仔应助文静的铅笔采纳,获得10
8秒前
鱿鱼炒黄瓜完成签到,获得积分10
9秒前
李妍妍完成签到,获得积分10
9秒前
清脆的白开水完成签到,获得积分10
9秒前
Lau完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959