Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma

拉曼光谱 线性判别分析 人工智能 主成分分析 支持向量机 食管鳞状细胞癌 机器学习 医学 肿瘤科 癌症 内科学 计算机科学 物理 光学
作者
Wenhua Huang,Qi‐Xin Shang,Xin Xiao,Qian Zhang,Yi‐Min Gu,Lin Yang,Guidong Shi,Yu‐Shang Yang,Hu Yang,Yong Yuan,Ai-Fang Ji,Longqi Chen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:281: 121654-121654 被引量:17
标识
DOI:10.1016/j.saa.2022.121654
摘要

Early diagnosis of esophageal squamous cell carcinoma (ESCC), a common malignant tumor with a low overall survival rate due to metastasis and recurrence, is critical for effective treatment and improved prognosis. Raman spectroscopy, an advanced detection technology for esophageal cancer, was developed to improve diagnosis sensitivity, specificity, and accuracy. This study proposed a novel, effective, and noninvasive Raman spectroscopy technique to differentiate and classify ESCC cell lines. Seven ESCC cell lines and tissues of an ESCC patient with staging of T3N1M0 and T3N2M0 at low and high differentiation levels were investigated through Raman spectroscopy. Raman spectral data analysis was performed with four machine learning algorithms, namely principal components analysis (PCA)- linear discriminant analysis (LDA), PCA-eXtreme gradient boosting (XGB), PCA- support vector machine (SVM), and PCA- (LDA, XGB, SVM)-stacked Gradient Boosting Machine (GBM). Four machine learning algorithms were able to classifiy ESCC cell subtypes from normal esophageal cells. The PCA-XGB model achieved an overall predictive accuracy of 85% for classifying ESCC and adjacent tissues. Moreover, an overall predictive accuracy of 90.3% was achieved in distinguishing low differentiation and high differentiation ESCC tissues with the same stage when PCA-LDA, XGM, and SVM models were combined. This study illustrated the Raman spectral traits of ESCC cell lines and esophageal tissues related to clinical pathological diagnosis. Future studies should investigate the role of Raman spectral features in ESCC pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianny关注了科研通微信公众号
1秒前
1秒前
CO2发布了新的文献求助10
1秒前
桐桐应助zhangscience采纳,获得10
2秒前
求助发布了新的文献求助10
3秒前
buno应助zoe采纳,获得10
4秒前
junzilan发布了新的文献求助10
4秒前
4秒前
细品岁月完成签到 ,获得积分10
4秒前
细心书蕾完成签到 ,获得积分10
5秒前
无花果应助l11x29采纳,获得10
7秒前
7秒前
老詹头发布了新的文献求助10
7秒前
思源应助叫滚滚采纳,获得10
8秒前
9秒前
刘歌完成签到 ,获得积分10
9秒前
阿巡完成签到,获得积分10
9秒前
Chen完成签到,获得积分10
11秒前
LSH970829发布了新的文献求助10
11秒前
哈哈哈完成签到 ,获得积分10
12秒前
汤姆完成签到,获得积分10
12秒前
14秒前
14秒前
翠翠完成签到,获得积分10
15秒前
15秒前
LSH970829完成签到,获得积分10
16秒前
Lyg完成签到,获得积分20
17秒前
坚强的樱发布了新的文献求助10
17秒前
baodingning完成签到,获得积分10
18秒前
18秒前
公茂源发布了新的文献求助30
18秒前
热爱完成签到,获得积分10
19秒前
20秒前
叫滚滚发布了新的文献求助10
21秒前
星瑆心完成签到,获得积分10
21秒前
啦啦啦啦啦完成签到,获得积分10
22秒前
Lyg发布了新的文献求助10
22秒前
Dksido完成签到,获得积分10
23秒前
兰博基尼奥完成签到,获得积分10
23秒前
热情芷荷发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808