已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma

拉曼光谱 线性判别分析 人工智能 主成分分析 支持向量机 食管鳞状细胞癌 机器学习 医学 肿瘤科 癌症 内科学 计算机科学 物理 光学
作者
Wenhua Huang,Qi‐Xin Shang,Xin Xiao,Qian Zhang,Yi‐Min Gu,Lin Yang,Guidong Shi,Yu‐Shang Yang,Hu Yang,Yong Yuan,Ai-Fang Ji,Longqi Chen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:281: 121654-121654 被引量:17
标识
DOI:10.1016/j.saa.2022.121654
摘要

Early diagnosis of esophageal squamous cell carcinoma (ESCC), a common malignant tumor with a low overall survival rate due to metastasis and recurrence, is critical for effective treatment and improved prognosis. Raman spectroscopy, an advanced detection technology for esophageal cancer, was developed to improve diagnosis sensitivity, specificity, and accuracy. This study proposed a novel, effective, and noninvasive Raman spectroscopy technique to differentiate and classify ESCC cell lines. Seven ESCC cell lines and tissues of an ESCC patient with staging of T3N1M0 and T3N2M0 at low and high differentiation levels were investigated through Raman spectroscopy. Raman spectral data analysis was performed with four machine learning algorithms, namely principal components analysis (PCA)- linear discriminant analysis (LDA), PCA-eXtreme gradient boosting (XGB), PCA- support vector machine (SVM), and PCA- (LDA, XGB, SVM)-stacked Gradient Boosting Machine (GBM). Four machine learning algorithms were able to classifiy ESCC cell subtypes from normal esophageal cells. The PCA-XGB model achieved an overall predictive accuracy of 85% for classifying ESCC and adjacent tissues. Moreover, an overall predictive accuracy of 90.3% was achieved in distinguishing low differentiation and high differentiation ESCC tissues with the same stage when PCA-LDA, XGM, and SVM models were combined. This study illustrated the Raman spectral traits of ESCC cell lines and esophageal tissues related to clinical pathological diagnosis. Future studies should investigate the role of Raman spectral features in ESCC pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiang完成签到,获得积分10
1秒前
灵巧的煎饼完成签到,获得积分10
1秒前
打打应助Asteria采纳,获得10
3秒前
4秒前
缓慢小熊猫完成签到 ,获得积分10
6秒前
corre完成签到,获得积分10
7秒前
8秒前
9秒前
zzz发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
11秒前
11秒前
刘学完成签到,获得积分10
11秒前
14秒前
Yuna96发布了新的文献求助10
15秒前
lois发布了新的文献求助10
16秒前
16秒前
16秒前
WWWUBING发布了新的文献求助10
18秒前
18秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
嘤嘤怪应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
天天快乐应助科研通管家采纳,获得30
20秒前
Akim应助科研通管家采纳,获得10
20秒前
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
程smile笑发布了新的文献求助10
21秒前
rumeng完成签到,获得积分10
22秒前
22秒前
JamesPei应助zzz采纳,获得10
22秒前
温暖砖头发布了新的文献求助10
23秒前
汉堡包应助二两采纳,获得10
23秒前
25秒前
肿瘤克星发布了新的文献求助10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310848
求助须知:如何正确求助?哪些是违规求助? 2943666
关于积分的说明 8515977
捐赠科研通 2619022
什么是DOI,文献DOI怎么找? 1431761
科研通“疑难数据库(出版商)”最低求助积分说明 664472
邀请新用户注册赠送积分活动 649732