Identification of early invisible acute ischemic stroke in non-contrast computed tomography using two-stage deep-learning model

四分位间距 医学 接收机工作特性 曲线下面积 放射科 队列 阶段(地层学) 回顾性队列研究 冲程(发动机) 置信区间 核医学 内科学 机械工程 生物 工程类 古生物学
作者
Jun Lü,Yiran Zhou,Wenzhi Lv,Hongquan Zhu,Tian Tian,Yan Su,Yan Xie,Di Wu,Yuanhao Li,Yufei Liu,Luyue Gao,Wei Fan,Nan Yan,Shun Zhang,Xiaomei Peng,Guiling Zhang,Wenzhen Zhu
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:12 (12): 5564-5573 被引量:9
标识
DOI:10.7150/thno.74125
摘要

Rationale: Although non-contrast computed tomography (NCCT) is the recommended examination for the suspected acute ischemic stroke (AIS), it cannot detect significant changes in the early infarction.We aimed to develop a deep-learning model to identify early invisible AIS in NCCT and evaluate its diagnostic performance and capacity for assisting radiologists in decision making.Methods: In this multi-center, multi-manufacturer retrospective study, 1136 patients with suspected AIS but invisible lesions in NCCT were collected from two geographically distant institutions between May 2012 to May 2021.The AIS lesions were confirmed based on the follow-up diffusion-weighted imaging and clinical diagnosis.The deep-learning model was comprised of two deep convolutional neural networks to locate and classify.The performance of the model and radiologists was evaluated by the area under the receiver operator characteristic curve (AUC), sensitivity, specificity, and accuracy values with 95% confidence intervals.Delong's test was used to compare the AUC values, and a chi-squared test was used to evaluate the rate differences.Results: 986 patients (728 AIS, median age, 55 years, interquartile range [IQR]: 47-65 years; 664 males) were assigned to the training and internal validation cohorts.150 patients (74 AIS, median age, 63 years, IQR: 53-75 years; 100 males) were included as an external validation cohort.The AUCs of the model were 83.61% (sensitivity, 68.99%; specificity, 98.22%; and accuracy, 89.87%) and 76.32% (sensitivity, 62.99%; specificity, 89.65%; and accuracy, 88.61%) for the internal and external validation cohorts based on the slices.The AUC of the model was much higher than that of two experienced radiologists (65.52% and 59.48% in the internal validation cohort; 64.01%and 64.39% in external validation cohort; all P < 0.001).The accuracy of two radiologists increased from 62.00% and 58.67% to 92.00% and 84.67% when assisted by the model for patients in the external validation cohort.Conclusions: This deep-learning model represents a breakthrough in solving the challenge that early invisible AIS lesions cannot be detected by NCCT.The model we developed in this study can screen early AIS and save more time.The radiologists assisted with the model can provide more effective guidance in making patients' treatment plan in clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助玲珑油豆腐采纳,获得10
1秒前
charih完成签到 ,获得积分10
1秒前
hxy808关注了科研通微信公众号
2秒前
佚小满完成签到,获得积分10
2秒前
c123完成签到 ,获得积分10
3秒前
3秒前
berry发布了新的文献求助10
3秒前
超11发布了新的文献求助10
3秒前
4秒前
4秒前
隐形曼青应助烩面大师采纳,获得10
4秒前
4秒前
默然的歌完成签到 ,获得积分10
4秒前
CTL发布了新的文献求助10
5秒前
5秒前
5秒前
大鹏完成签到,获得积分10
5秒前
5秒前
5秒前
congguitar发布了新的文献求助10
6秒前
CodeCraft应助韭黄采纳,获得10
6秒前
6秒前
小月发布了新的文献求助10
6秒前
香蕉觅云应助学渣向下采纳,获得10
7秒前
7秒前
YML完成签到,获得积分10
8秒前
荣安安完成签到,获得积分10
8秒前
啦某某完成签到,获得积分10
8秒前
sunzhiyu233发布了新的文献求助10
9秒前
zhenzhen发布了新的文献求助10
9秒前
fang发布了新的文献求助10
9秒前
chengyulin完成签到 ,获得积分10
9秒前
孙二二发布了新的文献求助10
9秒前
小二郎应助SY采纳,获得10
10秒前
Akim应助顺心的惜蕊采纳,获得10
11秒前
11秒前
berry完成签到,获得积分20
12秒前
康小郁完成签到,获得积分10
12秒前
快乐友灵完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759