Identification of early invisible acute ischemic stroke in non-contrast computed tomography using two-stage deep-learning model

四分位间距 医学 接收机工作特性 曲线下面积 放射科 队列 阶段(地层学) 回顾性队列研究 冲程(发动机) 置信区间 核医学 内科学 机械工程 古生物学 工程类 生物
作者
Jun Lü,Yiran Zhou,Wenzhi Lv,Hongquan Zhu,Tian Tian,Yan Su,Yan Xie,Di Wu,Yuanhao Li,Yufei Liu,Luyue Gao,Wei Fan,Nan Yan,Shun Zhang,Xiaomei Peng,Guiling Zhang,Wenzhen Zhu
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:12 (12): 5564-5573 被引量:9
标识
DOI:10.7150/thno.74125
摘要

Rationale: Although non-contrast computed tomography (NCCT) is the recommended examination for the suspected acute ischemic stroke (AIS), it cannot detect significant changes in the early infarction.We aimed to develop a deep-learning model to identify early invisible AIS in NCCT and evaluate its diagnostic performance and capacity for assisting radiologists in decision making.Methods: In this multi-center, multi-manufacturer retrospective study, 1136 patients with suspected AIS but invisible lesions in NCCT were collected from two geographically distant institutions between May 2012 to May 2021.The AIS lesions were confirmed based on the follow-up diffusion-weighted imaging and clinical diagnosis.The deep-learning model was comprised of two deep convolutional neural networks to locate and classify.The performance of the model and radiologists was evaluated by the area under the receiver operator characteristic curve (AUC), sensitivity, specificity, and accuracy values with 95% confidence intervals.Delong's test was used to compare the AUC values, and a chi-squared test was used to evaluate the rate differences.Results: 986 patients (728 AIS, median age, 55 years, interquartile range [IQR]: 47-65 years; 664 males) were assigned to the training and internal validation cohorts.150 patients (74 AIS, median age, 63 years, IQR: 53-75 years; 100 males) were included as an external validation cohort.The AUCs of the model were 83.61% (sensitivity, 68.99%; specificity, 98.22%; and accuracy, 89.87%) and 76.32% (sensitivity, 62.99%; specificity, 89.65%; and accuracy, 88.61%) for the internal and external validation cohorts based on the slices.The AUC of the model was much higher than that of two experienced radiologists (65.52% and 59.48% in the internal validation cohort; 64.01%and 64.39% in external validation cohort; all P < 0.001).The accuracy of two radiologists increased from 62.00% and 58.67% to 92.00% and 84.67% when assisted by the model for patients in the external validation cohort.Conclusions: This deep-learning model represents a breakthrough in solving the challenge that early invisible AIS lesions cannot be detected by NCCT.The model we developed in this study can screen early AIS and save more time.The radiologists assisted with the model can provide more effective guidance in making patients' treatment plan in clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
画风湖湘卷完成签到 ,获得积分10
1秒前
dd发布了新的文献求助10
1秒前
2秒前
2秒前
lyyyy发布了新的文献求助10
2秒前
浮游应助有魅力的寄琴采纳,获得10
2秒前
CASLSD完成签到 ,获得积分10
2秒前
Karlie完成签到,获得积分10
3秒前
天天快乐应助一区哥采纳,获得10
4秒前
搜集达人应助顾年采纳,获得10
4秒前
屈屈完成签到,获得积分10
5秒前
zyb完成签到,获得积分10
5秒前
XIAJIN完成签到,获得积分10
5秒前
领导范儿应助阳阳采纳,获得10
5秒前
你坤叔公发布了新的文献求助10
6秒前
6秒前
渡月桥完成签到,获得积分10
7秒前
情怀应助ZhouYW采纳,获得10
7秒前
7秒前
李爱国应助宓珧采纳,获得10
7秒前
8秒前
ZZZ发布了新的文献求助10
9秒前
Zzz关注了科研通微信公众号
9秒前
9秒前
范琴琴完成签到,获得积分10
10秒前
10秒前
10秒前
酷波er应助1043681559采纳,获得10
11秒前
11秒前
11秒前
梦里花落声应助dd采纳,获得10
11秒前
无心发布了新的文献求助10
12秒前
12秒前
端庄新烟发布了新的文献求助10
12秒前
压缩完成签到 ,获得积分0
13秒前
haha发布了新的文献求助10
13秒前
13秒前
Hou完成签到,获得积分10
13秒前
bing发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193830
求助须知:如何正确求助?哪些是违规求助? 4376175
关于积分的说明 13628611
捐赠科研通 4231092
什么是DOI,文献DOI怎么找? 2320710
邀请新用户注册赠送积分活动 1319080
关于科研通互助平台的介绍 1269416