Efficient Breeding of Crop Plants

物候学 选择(遗传算法) 植物育种 分子育种 生物技术 基因组选择 象形文字 标记辅助选择 生物 基因组学 资源(消歧) 作物 计算机科学 农学 数量性状位点 基因组 遗传学 人工智能 计算机网络 基因 单核苷酸多态性 基因型
作者
Pawan L. Kulwal,Reyazul Rouf Mir,Rajeev K. Varshney
标识
DOI:10.1007/978-981-16-9257-4_14
摘要

In crop breeding programs, the rate of genetic gain which is achieved using the traditional breeding is insufficient to meet the increased demand of food for the rapidly expanding global population. The main constraint with the conventional breeding is the time which is required in developing crosses, followed by selection and testing of the experimental cultivars. Although, using this technique, lot of progress has been made in increasing the productivity, the time has come to think beyond this and integrate the recent advances in the area of genomics, phenomics and computational biology into the conventional breeding program for increasing its efficiency. While doing this emphasis on proper characterization and use of plant genetic resources, defining the breeding objectives and use of recent advances in holistic way are also essential. Therefore, in this chapter, we first highlight the importance of plant breeding followed by significance of the plant genetic resources in the breeding program, need of ideotype breeding and the breeding objectives for important traits including resistance against various biotic and abiotic stresses. We then discuss the limitations of conventional breeding and advantages of genomics-assisted breeding. While doing this, we also discuss various molecular breeding tools and genomic resources as well as different approaches for efficient breeding including marker-assisted selection, marker-assisted recurrent selection and genomic selection. This is followed by importance of other non-conventional approaches including the recent one on gene editing, speed breeding and role of integrated data management and bioinformatics in the breeding programs. We also discuss the significance of phenomics and phenotyping platforms in the crop breeding as well as role of computational techniques like artificial intelligence and machine learning in analysing the huge data which is being generated in the breeding programs. Finally, we conclude with a brief note on the emerging challenges in breeding which need to be addressed and the thrust areas of research for the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聂士松完成签到 ,获得积分10
2秒前
Kevin Li发布了新的文献求助10
3秒前
123456发布了新的文献求助10
4秒前
4秒前
cuihl123发布了新的文献求助10
5秒前
七月流火应助手心宇宙采纳,获得50
5秒前
5秒前
良辰应助豆豆小baby采纳,获得10
5秒前
懦弱的乐蕊完成签到 ,获得积分10
10秒前
nicewink发布了新的文献求助10
10秒前
星星完成签到,获得积分10
10秒前
安伊发布了新的文献求助10
12秒前
12秒前
呆呆小猪完成签到,获得积分10
13秒前
科研通AI5应助UU采纳,获得10
14秒前
乐乐应助浅斟低唱采纳,获得10
14秒前
16秒前
16秒前
20秒前
Bai发布了新的文献求助10
20秒前
22秒前
cxwong发布了新的文献求助10
25秒前
25秒前
27秒前
smile发布了新的文献求助10
27秒前
123mmmm发布了新的文献求助10
28秒前
Hello应助UU采纳,获得30
29秒前
30秒前
科研通AI5应助Bai采纳,获得10
30秒前
安伊完成签到,获得积分10
31秒前
852应助秀丽的初柔采纳,获得10
31秒前
高贵魂幽发布了新的文献求助10
32秒前
非著名拜拜小乌龟完成签到,获得积分20
33秒前
36秒前
金鸿发布了新的文献求助10
36秒前
浅斟低唱发布了新的文献求助10
36秒前
smile完成签到,获得积分10
36秒前
yy发布了新的文献求助10
41秒前
科研通AI2S应助金鸿采纳,获得10
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522999
求助须知:如何正确求助?哪些是违规求助? 3103998
关于积分的说明 9268228
捐赠科研通 2800737
什么是DOI,文献DOI怎么找? 1537106
邀请新用户注册赠送积分活动 715406
科研通“疑难数据库(出版商)”最低求助积分说明 708777