Inferring Brain State Dynamics Underlying Naturalistic Stimuli Evoked Emotion Changes With dHA-HMM

悲伤 心理学 认知心理学 隐马尔可夫模型 认知 幸福 大脑活动与冥想 动态功能连接 额中回
作者
Chenhao Tan,Xin Liu,Gaoyan Zhang
出处
期刊:Neuroinformatics [Springer Nature]
标识
DOI:10.1007/s12021-022-09568-5
摘要

The brain functional mechanisms underlying emotional changes have been primarily studied based on the traditional task design with discrete and simple stimuli. However, the brain state transitions when exposed to continuous and naturalistic stimuli with rich affection variations remain poorly understood. This study proposes a dynamic hyperalignment algorithm (dHA) to functionally align the inter-subject neural activity. The hidden Markov model (HMM) was used to study how the brain dynamics responds to emotion during long-time movie-viewing activity. The results showed that dHA significantly improved inter-subject consistency and allowed more consistent temporal HMM states across participants. Afterward, grouping the emotions in a clustering dendrogram revealed a hierarchical grouping of the HMM states. Further emotional sensitivity and specificity analyses of ordered states revealed the most significant differences in happiness and sadness. We then compared the activation map in HMM states during happiness and sadness and found significant differences in the whole brain, but strong activation was observed during both in the superior temporal gyrus, which is related to the early process of emotional prosody processing. A comparison of the inter-network functional connections indicates unique functional connections of the memory retrieval and cognitive network with the cerebellum network during happiness. Moreover, the persistent bilateral connections among salience, cognitive, and sensorimotor networks during sadness may reflect the interaction between high-level cognitive networks and low-level sensory networks. The main results were verified by the second session of the dataset. All these findings enrich our understanding of the brain states related to emotional variation during naturalistic stimuli.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助尊敬薯片采纳,获得10
1秒前
1秒前
2秒前
哈哈发布了新的文献求助10
2秒前
畅快不平发布了新的文献求助10
3秒前
orixero应助zwenng采纳,获得10
3秒前
4秒前
5秒前
6秒前
董家小生发布了新的文献求助10
9秒前
10秒前
乘风发布了新的文献求助10
10秒前
Celeste发布了新的文献求助30
12秒前
13秒前
lml520完成签到,获得积分10
13秒前
13秒前
14秒前
田野的小家庭关注了科研通微信公众号
14秒前
小白完成签到 ,获得积分10
15秒前
zwenng发布了新的文献求助10
15秒前
KjLumos完成签到,获得积分10
16秒前
Orange应助ll采纳,获得10
16秒前
18秒前
尊敬薯片发布了新的文献求助10
20秒前
20秒前
20秒前
666666666666666完成签到,获得积分10
21秒前
Zhaoruichen发布了新的文献求助50
21秒前
21秒前
21秒前
23秒前
24秒前
孙绪鹏发布了新的文献求助10
24秒前
AL发布了新的文献求助10
25秒前
共享精神应助左丘冥采纳,获得10
25秒前
25秒前
罗八七完成签到,获得积分10
25秒前
哈哈完成签到,获得积分10
26秒前
俭朴大开完成签到,获得积分10
26秒前
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803043
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302778
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237