Inferring Brain State Dynamics Underlying Naturalistic Stimuli Evoked Emotion Changes With dHA-HMM

悲伤 心理学 认知心理学 隐马尔可夫模型 认知 幸福 大脑活动与冥想 脑电图 神经科学 人工智能 计算机科学 愤怒 社会心理学 精神科
作者
Chenhao Tan,Xin Liu,Gaoyan Zhang
出处
期刊:Neuroinformatics [Springer Nature]
卷期号:20 (3): 737-753 被引量:11
标识
DOI:10.1007/s12021-022-09568-5
摘要

The brain functional mechanisms underlying emotional changes have been primarily studied based on the traditional task design with discrete and simple stimuli. However, the brain state transitions when exposed to continuous and naturalistic stimuli with rich affection variations remain poorly understood. This study proposes a dynamic hyperalignment algorithm (dHA) to functionally align the inter-subject neural activity. The hidden Markov model (HMM) was used to study how the brain dynamics responds to emotion during long-time movie-viewing activity. The results showed that dHA significantly improved inter-subject consistency and allowed more consistent temporal HMM states across participants. Afterward, grouping the emotions in a clustering dendrogram revealed a hierarchical grouping of the HMM states. Further emotional sensitivity and specificity analyses of ordered states revealed the most significant differences in happiness and sadness. We then compared the activation map in HMM states during happiness and sadness and found significant differences in the whole brain, but strong activation was observed during both in the superior temporal gyrus, which is related to the early process of emotional prosody processing. A comparison of the inter-network functional connections indicates unique functional connections of the memory retrieval and cognitive network with the cerebellum network during happiness. Moreover, the persistent bilateral connections among salience, cognitive, and sensorimotor networks during sadness may reflect the interaction between high-level cognitive networks and low-level sensory networks. The main results were verified by the second session of the dataset. All these findings enrich our understanding of the brain states related to emotional variation during naturalistic stimuli.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好这位仁兄完成签到,获得积分10
刚刚
1秒前
1秒前
妘婴完成签到,获得积分10
2秒前
han发布了新的文献求助10
2秒前
小蘑菇应助Mansis采纳,获得10
3秒前
3秒前
4秒前
兰亭序发布了新的文献求助10
5秒前
刻苦惜萍发布了新的文献求助10
6秒前
6秒前
可爱的函函应助折折采纳,获得30
6秒前
烟花应助苏卡不列颠采纳,获得10
7秒前
7秒前
8秒前
脑洞疼应助诸葛朝雪采纳,获得10
8秒前
炙热的雪糕完成签到,获得积分10
8秒前
8秒前
雪白亦旋发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
yaya发布了新的文献求助10
11秒前
Ava应助Doctor.TANG采纳,获得10
11秒前
小杭76应助大Lee采纳,获得10
12秒前
完美世界应助TIANEO采纳,获得10
12秒前
12秒前
传奇3应助刻苦惜萍采纳,获得10
12秒前
赵伟豪发布了新的文献求助10
13秒前
DiJia发布了新的文献求助10
14秒前
guyuangyy发布了新的文献求助10
15秒前
淡淡菠萝完成签到 ,获得积分10
15秒前
星河zp完成签到,获得积分10
15秒前
大个应助ggbond采纳,获得20
15秒前
16秒前
长安完成签到,获得积分10
16秒前
16秒前
添添完成签到 ,获得积分10
16秒前
halabouqii发布了新的文献求助10
16秒前
初芷伊完成签到,获得积分10
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572