介孔材料
催化作用
X射线光电子能谱
法拉第效率
固氮酶
电催化剂
格子(音乐)
吸收光谱法
材料科学
氧化还原
可逆氢电极
氧烷
电极
化学
纳米技术
化学工程
结晶学
光谱学
无机化学
氮气
固氮
物理化学
电化学
物理
工作电极
光学
有机化学
工程类
量子力学
声学
作者
Jiayin Chen,Yikun Kang,Wei Zhang,Zhenghao Zhang,Yan Chen,Yi Yang,Linlin Duan,Yefei Li,Wei Li
标识
DOI:10.1002/anie.202203022
摘要
Mimicking natural nitrogenase to create highly efficient single-atom catalysts (SACs) for ambient N2 fixation is highly desired, but still challenging. Herein, S-coordinated Fe SACs on mesoporous TiO2 have been constructed by a lattice-confined strategy. The extended X-ray absorption fine structure and X-ray photoelectron spectroscopy spectra demonstrate that Fe atoms are anchored in TiO2 lattice via the FeS2 O2 coordination configuration. Theoretical calculations reveal that FeS2 O2 sites are the active centers for electrocatalytic nitrogen reduction reaction (NRR). Moreover, the finite element analysis shows that confinement of opened and ordered mesopores can facilitate the mass transport and offer an enlarged active surface area for NRR. As a result, this catalyst delivers a favorable NH3 yield rate of 18.3 μg h-1 mgcat.-1 with a high Faradaic efficiency of 17.3 % at -0.20 V versus a reversible hydrogen electrode. Most importantly, this lattice-confined strategy is universal and can also be applied to Ni1 Sx @TiO2 , Co1 Sx @TiO2 , Mo1 Sx @TiO2 , and Cu1 Sx @TiO2 SACs. Our study provides new hints for the design and biomimetic synthesis of highly efficient NRR electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI