Graph-based modeling using association rule mining to detect influential users in social networks

关联规则学习 计算机科学 数据挖掘 图形 联想(心理学) 人工智能 机器学习 数据科学 理论计算机科学 认识论 哲学
作者
Tarik Agouti
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:202: 117436-117436 被引量:5
标识
DOI:10.1016/j.eswa.2022.117436
摘要

• A proposed graph-based approach using association rule mining to detect influential users in social networks. • It includes a new diffusion-graph-based algorithm for influence maximization problem. • A new centrality measure, called completeness centrality, of identifying top nodes using all possible paths in the network. • Experimental results show the effectiveness and efficiency of our proposed measure and graph-based approach. Information diffusion is an important and attractive field of research in the area of social network analysis, and is at the heart of many studies and applications of knowledge extraction and prediction. Most of these studies have focused on identifying the most influential users and predicting user participation. Nevertheless, despite the extensive research efforts that have been made to tackle these issues, there is still a need for approaches based on association rules mining and graph theory. In this study, we contribute to research in this field by introducing a novel graph-based approach that applies association rules mining to detect influential users. We argue that users influence each other, and that it is possible to predict a user’s interests and participation based on previous interactions in the social network. We introduce new concepts and algorithms for more efficient characterization of influential users, and develop an effective approach for the discovery of influencers by using association rule techniques to extract the hidden relationships between users. To evaluate the feasibility and effectiveness of our approach, we propose a new centrality measure called the completeness centrality, and perform an evaluation based on a case study selected from the literature. We then evaluate the effectiveness of the proposed centrality measure by using the susceptible-infected-recovered model and the overlapping similarity measure. The results demonstrate that our measure is feasible and effective for use in identifying influential spreaders, based on a comparison with existing centrality measures such as degree, betweenness, closeness, and eigenvector methods. Finally, to illustrate the efficiency of our approach, experiments were run on 25 generated diffusion graphs, and the results showed that our approach could achieve a high level of performance in terms of computational time for large-scale networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦旋发布了新的文献求助10
1秒前
阿辉发布了新的文献求助10
2秒前
Aaron发布了新的文献求助10
3秒前
闪闪小小完成签到 ,获得积分10
3秒前
3秒前
情怀应助科研小胖次采纳,获得10
4秒前
田様应助勤劳的小蜜蜂采纳,获得10
4秒前
昼夜发布了新的文献求助10
6秒前
冯小Q发布了新的文献求助10
7秒前
7秒前
傻傻的竺发布了新的文献求助10
10秒前
10秒前
细心的语蓉应助Self-made采纳,获得100
11秒前
11秒前
科研通AI5应助monistar采纳,获得10
11秒前
欣欣完成签到 ,获得积分10
12秒前
YY发布了新的文献求助10
12秒前
在水一方应助Gurlstrian采纳,获得10
13秒前
小马甲应助sun采纳,获得10
14秒前
LWJ完成签到 ,获得积分10
14秒前
14秒前
111完成签到,获得积分10
14秒前
李淡定完成签到,获得积分10
14秒前
wwqdd发布了新的文献求助10
16秒前
17秒前
大大小小发布了新的文献求助10
18秒前
平淡纸飞机完成签到 ,获得积分10
18秒前
20秒前
lincool发布了新的文献求助10
21秒前
21秒前
清秀的无颜完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
23秒前
23秒前
24秒前
CipherSage应助金桔儿采纳,获得10
24秒前
24秒前
sun发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559737
求助须知:如何正确求助?哪些是违规求助? 3134233
关于积分的说明 9406103
捐赠科研通 2834272
什么是DOI,文献DOI怎么找? 1557967
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716507