材料科学
光致发光
荧光粉
热稳定性
锑
量子产额
色温
光子上转换
卤化物
光电子学
金属卤化物
兴奋剂
金属
光学
无机化学
化学
荧光
物理
有机化学
冶金
作者
Chen Li,Zhishan Luo,Yulian Liu,Yi Wei,Xin He,Zhongwei Chen,Liming Zhang,Yulin Chen,Wei Wang,Yejing Liu,Xiaoyong Chang,Zewei Quan
标识
DOI:10.1002/adom.202102746
摘要
Abstract Self‐trapped exciton (STE) emission in some metal halides has acquired great interest in recent years due to their broadband emission, large Stokes shift, and high photoluminescence quantum yield (PLQY). However, severe thermal quenching of STE emission is still a critical bottleneck that impedes their application in light‐emitting field. Herein, a novel zero‐dimensional hybrid metal halide, Sb 3+ ‐doped (BTPP) 2 MnCl 4 (BTPP = Benzyltriphenylphosphonium), is accordingly synthesized to address this issue. This compound exhibits excitation‐dependent dual emissions including STE emission of antimony chloride tetrahedron and 4 T 1 ‐ 6 A 1 transition of Mn 2+ ions, resulting in a tunable emission color from green to orange. More importantly, the PL intensity of STE emission at 420 K in (BTPP) 2 MnCl 4 :2.0%Sb can maintain 72.5% of its ambient value, which is superior to current organic–inorganic hybrid metal halides. Temperature‐dependent and time‐resolved spectroscopy results suggest that the high thermal stability of STE emission originates from the efficient energy transfer from (BTPP) 2 MnCl 4 host to antimony chloride tetrahedron, which promotes the formation of STEs. The white light‐emitting diode based on this (BTPP) 2 MnCl 4 :2.0%Sb phosphor exhibits high‐performance warm white light with a correlated color temperature of 4827 K and a color rendering index of 88.7, which demonstrates its potential in solid‐state lighting applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI