分生孢子
生物
巢状曲霉
向光性
真菌蛋白
细胞生物学
突变体
基因
遗传学
光学
物理
蓝光
作者
Dongxu Song,Yueqing Cao,Yuxian Xia
标识
DOI:10.1111/1462-2920.16000
摘要
Conidiation necessary for filamentous fungal survival and dispersal proceeds in two fashions, namely, normal conidiation through conidiophores differentiated from hyphae and microcycle conidiation through conidial budding. Normal conidiation has been well studied, whereas mechanisms underlying microcycle conidiation are still largely unknown. Here, we report that a gene (MaNsdD) homologous to NsdD in Aspergillus nidulans serves as a suppressor of normal conidiation but a positive regulator of hyphal development in Metarhizium acridum. Disruption of MaNsdD (ΔMaNsdD) resulted in microcycle conidiation and significantly descended in conidial resistance to heat while improved to UV irradiation. Transcriptomic analysis revealed that many genes involved in conidiation, cell division and cell wall formation were differentially expressed in ΔMaNsdD, and likely associated with the conidiation process. We found that a gene (MaAbaA) homologous to the core asexual development regulator AbaA in A. nidulans was negatively controlled by MaNsdD. Disruption of MaAbaA led to the abolition of the conidiation process of M. acridum. These findings unravel a novel regulatory mechanism of microcycle conidiation and add knowledge to the asexual conidiation pathway of filamentous fungi.
科研通智能强力驱动
Strongly Powered by AbleSci AI