已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-Order Correlation Preserved Incomplete Multi-View Subspace Clustering

聚类分析 子空间拓扑 超图 计算机科学 数学 拉普拉斯矩阵 拉普拉斯算子 模式识别(心理学) 算法 人工智能 组合数学 数学分析
作者
Zhenglai Li,Chang Tang,Xiao Zheng,Xinwang Liu,Wei Zhang,En Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2067-2080 被引量:87
标识
DOI:10.1109/tip.2022.3147046
摘要

Incomplete multi-view clustering aims to exploit the information of multiple incomplete views to partition data into their clusters. Existing methods only utilize the pair-wise sample correlation and pair-wise view correlation to improve the clustering performance but neglect the high-order correlation of samples and that of views. To address this issue, we propose a high-order correlation preserved incomplete multi-view subspace clustering (HCP-IMSC) method which effectively recovers the missing views of samples and the subspace structure of incomplete multi-view data. Specifically, multiple affinity matrices constructed from the incomplete multi-view data are treated as a third-order low rank tensor with a tensor factorization regularization which preserves the high-order view correlation and sample correlation. Then, a unified affinity matrix can be obtained by fusing the view-specific affinity matrices in a self-weighted manner. A hypergraph is further constructed from the unified affinity matrix to preserve the high-order geometrical structure of the data with incomplete views. Then, the samples with missing views are restricted to be reconstructed by their neighbor samples under the hypergraph-induced hyper-Laplacian regularization. Furthermore, the learning of view-specific affinity matrices as well as the unified one, tensor factorization, and hyper-Laplacian regularization are integrated into a unified optimization framework. An iterative algorithm is designed to solve the resultant model. Experimental results on various benchmark datasets indicate the superiority of the proposed method. The code is implemented by using MATLAB R2018a and MindSpore library: https://github.com/ChangTang/HCP-IMSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
余十一完成签到,获得积分10
1秒前
1秒前
明毓关注了科研通微信公众号
1秒前
eternity136应助朱宸采纳,获得10
3秒前
墨瞳发布了新的文献求助80
6秒前
Akim应助淡定荧采纳,获得10
7秒前
Vicgrance发布了新的文献求助10
7秒前
天天快乐应助阿喵采纳,获得10
8秒前
蜜桃小丸子完成签到 ,获得积分10
9秒前
李家静完成签到 ,获得积分10
12秒前
傻鱼辣椒完成签到,获得积分20
13秒前
abiorz完成签到,获得积分10
14秒前
窗外是蔚蓝色完成签到,获得积分10
15秒前
17秒前
DireWolf完成签到 ,获得积分10
18秒前
Agamemnon完成签到,获得积分10
19秒前
zxh656691发布了新的文献求助10
24秒前
25秒前
28秒前
传奇3应助菠萝吹雪采纳,获得10
31秒前
斯文败类应助傻鱼辣椒采纳,获得10
31秒前
Akim应助铁男卡卡罗特采纳,获得10
33秒前
朱宸发布了新的文献求助10
34秒前
su完成签到,获得积分10
34秒前
35秒前
薛同学完成签到,获得积分10
38秒前
在水一方应助静哥采纳,获得10
40秒前
41秒前
42秒前
Charles完成签到,获得积分10
44秒前
绾妤完成签到 ,获得积分10
45秒前
46秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
CodeCraft应助科研通管家采纳,获得10
47秒前
田様应助科研通管家采纳,获得10
47秒前
烟花应助科研通管家采纳,获得10
47秒前
47秒前
HS完成签到,获得积分10
48秒前
十三完成签到,获得积分10
50秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130010
求助须知:如何正确求助?哪些是违规求助? 2780834
关于积分的说明 7750228
捐赠科研通 2436057
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623703
版权声明 600570