Using ECG signals for hypotensive episode prediction in trauma patients

生命体征 计算机科学 战场 人工智能 重症监护室 血压 编码器 医学 模式识别(心理学) 医疗急救 重症监护医学 内科学 外科 历史 操作系统 古代史
作者
Neta Rosenfeld,Mark Last
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:223: 106955-106955 被引量:1
标识
DOI:10.1016/j.cmpb.2022.106955
摘要

Bleeding is the leading cause of death among trauma patients both in military and civilian scenarios, and it is also the most common cause of preventable death. Identifying a casualty who suffers from an internal bleeding and may deteriorate rapidly and develop hemorrhagic shock and multiorgan failure is a profound challenge. Blood pressure and heart rate are the main vital signs used nowadays for the casualty clinical evaluation in the battlefield and in intensive care unit. However, these vitals tend to deteriorate at a relatively late stage, when the ability to prevent hazardous complications is limited. Identifying, treating, and rapidly evacuating such casualties might mitigate these complications. In this work, we try to improve a state-of-the-art method for early identification of Hypotensive Episode (HE), by adding electrocardiogram signals to several vital signs.In this research, we propose to extend the state-of-the-art HE early detection method, In-Window Segmentation (InWise), by adding new types of features extracted from ECG signals. The new predictive features can be extracted from ECG signals both manually and automatically by a convolutional auto-encoder. In addition to InWise, we are trying to predict HE using a Transformer model. The Transformer is using the encoder output as an embedding of the ECG signal. The proposed approach is evaluated on trauma patients data from the MIMIC III database.We evaluated the InWise prediction algorithm using four different groups of features. The first feature group contains the 93 original features extracted from vital signs. The second group contains, in addition to the original features, 24 features extracted manually from ECG signal (117 features in total). The third group contains the original features and 20 ECG features extracted by the AE (113 features in total), and the last group is the union of all three previous groups containing 137 features. The results show that each model, which has used ECG data, is outperforming the original InWise model, in terms of AUC and sensitivity with p-value <0.001 (by 0.7% in AUC and up to 3.8% in sensitivity). The model which has used all three feature types (vital signs, manual ECG and AE ECG), outperforms the original model both in terms of accuracy and specificity with p-value <0.001 (by 0.3% and 0.4% respectively).The results show an improvement in the prediction success rates as a result of using ECG-based features. The importance of ECG features was confirmed by the feature importance analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shulin完成签到 ,获得积分10
刚刚
刚刚
Liiiily发布了新的文献求助10
刚刚
1秒前
废柴发布了新的文献求助10
1秒前
2秒前
2秒前
细心的小懒虫完成签到,获得积分10
2秒前
小蘑菇应助wangyue采纳,获得10
3秒前
彩色的篮球完成签到 ,获得积分10
3秒前
汉关明月发布了新的文献求助10
3秒前
4秒前
梁_发布了新的文献求助10
4秒前
cookie发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
barrycream完成签到,获得积分20
6秒前
TJ发布了新的文献求助10
7秒前
小七发布了新的文献求助10
7秒前
7秒前
奋斗的菀发布了新的文献求助30
8秒前
菜菜Cc发布了新的文献求助10
8秒前
barrycream发布了新的文献求助20
10秒前
大锤滴小学生完成签到,获得积分20
10秒前
10秒前
yls发布了新的文献求助10
10秒前
Kz发布了新的文献求助10
11秒前
11秒前
11秒前
科研通AI2S应助柒柒采纳,获得10
11秒前
11秒前
yhdeng完成签到,获得积分10
11秒前
溪鱼发布了新的文献求助10
12秒前
和平的为完成签到,获得积分10
12秒前
思源应助red采纳,获得10
12秒前
QQ发布了新的文献求助10
12秒前
桐桐应助生物牛马采纳,获得10
13秒前
草莓派完成签到,获得积分10
13秒前
Cloud应助大胆的颜演采纳,获得20
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143897
求助须知:如何正确求助?哪些是违规求助? 2795508
关于积分的说明 7815487
捐赠科研通 2451567
什么是DOI,文献DOI怎么找? 1304518
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419