Using ECG signals for hypotensive episode prediction in trauma patients

生命体征 计算机科学 战场 人工智能 重症监护室 血压 编码器 医学 模式识别(心理学) 医疗急救 重症监护医学 内科学 外科 古代史 历史 操作系统
作者
Neta Rosenfeld,Mark Last
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:223: 106955-106955 被引量:1
标识
DOI:10.1016/j.cmpb.2022.106955
摘要

Bleeding is the leading cause of death among trauma patients both in military and civilian scenarios, and it is also the most common cause of preventable death. Identifying a casualty who suffers from an internal bleeding and may deteriorate rapidly and develop hemorrhagic shock and multiorgan failure is a profound challenge. Blood pressure and heart rate are the main vital signs used nowadays for the casualty clinical evaluation in the battlefield and in intensive care unit. However, these vitals tend to deteriorate at a relatively late stage, when the ability to prevent hazardous complications is limited. Identifying, treating, and rapidly evacuating such casualties might mitigate these complications. In this work, we try to improve a state-of-the-art method for early identification of Hypotensive Episode (HE), by adding electrocardiogram signals to several vital signs.In this research, we propose to extend the state-of-the-art HE early detection method, In-Window Segmentation (InWise), by adding new types of features extracted from ECG signals. The new predictive features can be extracted from ECG signals both manually and automatically by a convolutional auto-encoder. In addition to InWise, we are trying to predict HE using a Transformer model. The Transformer is using the encoder output as an embedding of the ECG signal. The proposed approach is evaluated on trauma patients data from the MIMIC III database.We evaluated the InWise prediction algorithm using four different groups of features. The first feature group contains the 93 original features extracted from vital signs. The second group contains, in addition to the original features, 24 features extracted manually from ECG signal (117 features in total). The third group contains the original features and 20 ECG features extracted by the AE (113 features in total), and the last group is the union of all three previous groups containing 137 features. The results show that each model, which has used ECG data, is outperforming the original InWise model, in terms of AUC and sensitivity with p-value <0.001 (by 0.7% in AUC and up to 3.8% in sensitivity). The model which has used all three feature types (vital signs, manual ECG and AE ECG), outperforms the original model both in terms of accuracy and specificity with p-value <0.001 (by 0.3% and 0.4% respectively).The results show an improvement in the prediction success rates as a result of using ECG-based features. The importance of ECG features was confirmed by the feature importance analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助xly采纳,获得10
刚刚
科研小助完成签到,获得积分10
刚刚
时尚半仙发布了新的文献求助10
刚刚
专注大门完成签到,获得积分10
1秒前
1秒前
花非花雾非雾完成签到,获得积分10
1秒前
Lynn发布了新的文献求助10
2秒前
majiko完成签到,获得积分10
2秒前
3秒前
3秒前
共享精神应助静85采纳,获得10
3秒前
宇宙少女完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
乔垣结衣发布了新的文献求助10
6秒前
6秒前
顾矜应助鳗鱼飞松采纳,获得10
6秒前
跳跳妈妈发布了新的文献求助30
7秒前
7秒前
lanxixi完成签到,获得积分10
7秒前
sc完成签到,获得积分10
7秒前
清河海风完成签到,获得积分10
7秒前
naturehome完成签到,获得积分10
8秒前
8秒前
小蘑菇应助124578采纳,获得10
8秒前
shirley完成签到,获得积分10
8秒前
mumu发布了新的文献求助10
9秒前
Link完成签到,获得积分20
9秒前
yar应助可爱香槟采纳,获得10
9秒前
Hello应助东风采纳,获得10
9秒前
蟹浦肉完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
Link发布了新的文献求助30
10秒前
10秒前
Sakura完成签到,获得积分20
11秒前
不安灵竹关注了科研通微信公众号
12秒前
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002