化学
溶解
电化学
浸出(土壤学)
催化作用
铂金
氧化还原
电极
氧气
法拉第效率
过渡金属
无机化学
化学工程
物理化学
工程类
土壤科学
土壤水分
有机化学
生物化学
环境科学
作者
Yu-Ping Ku,Konrad Ehelebe,Andreas Hutzler,Markus Bierling,Thomas Böhm,Andrea Zitolo,Mykhailo Vorokhta,Nicolas Bibent,Florian Speck,Dominik Seeberger,Ivan Khalakhan,Karl Johann Jakob Mayrhofer,Simon Thiele,Frédéric Jaouen,Serhiy Cherevko
摘要
The electrochemical activity of modern Fe-N-C electrocatalysts in alkaline media is on par with that of platinum. For successful application in fuel cells (FCs), however, also high durability and longevity must be demonstrated. Currently, a limited understanding of degradation pathways, especially under operando conditions, hinders the design and synthesis of simultaneously active and stable Fe-N-C electrocatalysts. In this work, using a gas diffusion electrode half-cell coupled with inductively coupled plasma mass spectrometry setup, Fe dissolution is studied under conditions close to those in FCs, that is, with a porous catalyst layer (CL) and at current densities up to -125 mA·cm-2. Varying the rate of the oxygen reduction reaction (ORR), we show a remarkable linear correlation between the Faradaic charge passed through the electrode and the amount of Fe dissolved from the electrode. This finding is rationalized assuming that oxygen reduction and Fe dissolution reactions are interlinked, likely through a common intermediate formed during the Fe redox transitions in Fe species involved in the ORR, such as FeNxCy and Fe3C@N-C. Moreover, such a linear correlation allows the application of a simple metric─S-number─to report the material's stability. Hence, in the current work, a powerful tool for a more applied stability screening of different electrocatalysts is introduced, which allows on the one hand fast performance investigations under more realistic conditions, and on the other hand a more advanced mechanistic understanding of Fe-N-C degradation in CLs.
科研通智能强力驱动
Strongly Powered by AbleSci AI