Deep EEG Superresolution via Correlating Brain Structural and Functional Connectivities

脑电图 模式识别(心理学) 人工智能 计算机科学 卷积神经网络 深度学习 脑-机接口 语音识别 心理学 神经科学
作者
Yunbo Tang,Dan Chen,Honghai Liu,Chang Cai,Xiaoli Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4410-4422 被引量:17
标识
DOI:10.1109/tcyb.2022.3178370
摘要

Electroencephalogram (EEG) excels in portraying rapid neural dynamics at the level of milliseconds, but its spatial resolution has often been lagging behind the increasing demands in neuroscience research or subject to limitations imposed by emerging neuroengineering scenarios, especially those centering on consumer EEG devices. Current superresolution (SR) methods generally do not suffice in the reconstruction of high-resolution (HR) EEG as it remains a grand challenge to properly handle the connection relationship amongst EEG electrodes (channels) and the intensive individuality of subjects. This study proposes a deep EEG SR framework correlating brain structural and functional connectivities (Deep-EEGSR), which consists of a compact convolutional network and an auxiliary fully connected network for filter generation (FGN). Deep-EEGSR applies graph convolution adapting to the structural connectivity amongst EEG channels when coding SR EEG. Sample-specific dynamic convolution is designed with filter parameters adjusted by FGN conforming to functional connectivity of intensive subject individuality. Overall, Deep-EEGSR operates on low-resolution (LR) EEG and reconstructs the corresponding HR acquisitions through an end-to-end SR course. The experimental results on three EEG datasets (autism spectrum disorder, emotion, and motor imagery) indicate that: 1) Deep-EEGSR significantly outperforms the state-of-the-art counterparts with normalized mean squared error (NMSE) decreased by 1%–6% and the improvement of signal-to-noise ratio (SNR) up to 1.2 dB and 2) the SR EEG manifests superiority to the LR alternative in ASD discrimination and spatial localization of typical ASD EEG characteristics, and this superiority even increases with the scale of SR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王宇杰发布了新的文献求助10
1秒前
2秒前
李健的小迷弟应助998685采纳,获得10
2秒前
烟花应助无情的宛儿采纳,获得10
4秒前
冷板凳完成签到 ,获得积分10
4秒前
九辨发布了新的文献求助10
4秒前
Yuan完成签到,获得积分10
5秒前
Yuqing完成签到,获得积分10
5秒前
6秒前
科研通AI5应助甜甜的难敌采纳,获得10
6秒前
7秒前
character577完成签到 ,获得积分10
7秒前
7秒前
前人树后人果完成签到,获得积分10
7秒前
哇哈哈完成签到,获得积分20
8秒前
9秒前
9秒前
科研通AI5应助UBW采纳,获得10
9秒前
hjh完成签到,获得积分20
10秒前
11秒前
丢丢银发布了新的文献求助10
11秒前
hhhhh发布了新的文献求助10
11秒前
领导范儿应助苹果惜梦采纳,获得10
12秒前
12秒前
归尘发布了新的文献求助10
12秒前
完美世界应助yy采纳,获得10
12秒前
13秒前
所所应助KINA采纳,获得10
14秒前
GRJ发布了新的文献求助10
14秒前
水灯霖发布了新的文献求助10
15秒前
液晶屏99发布了新的文献求助10
15秒前
15秒前
如意立果完成签到,获得积分20
16秒前
怕孤独的飞飞完成签到,获得积分10
16秒前
998685发布了新的文献求助10
17秒前
xybc发布了新的文献求助10
17秒前
何111发布了新的文献求助10
18秒前
宜醉宜游宜睡应助南苏采纳,获得10
18秒前
科研通AI5应助悟空采纳,获得10
19秒前
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483701
求助须知:如何正确求助?哪些是违规求助? 3072962
关于积分的说明 9128742
捐赠科研通 2764574
什么是DOI,文献DOI怎么找? 1517253
邀请新用户注册赠送积分活动 701974
科研通“疑难数据库(出版商)”最低求助积分说明 700831