An ultralow-charge-overpotential and long-cycle-life solid-state Li-CO2 battery enabled by plasmon-enhanced solar photothermal catalysis

过电位 材料科学 等离子体子 电池(电) 异质结 催化作用 纳米技术 光电子学 电化学 电极 物理化学 化学 有机化学 功率(物理) 物理 量子力学
作者
Sheng Wang,Hucheng Song,Ting Zhu,Jiaming Chen,Zhiqian Yu,Pengfei Wang,Linwei Yu,Jun Xu,Haoshen Zhou,Kunji Chen
出处
期刊:Nano Energy [Elsevier]
卷期号:100: 107521-107521 被引量:22
标识
DOI:10.1016/j.nanoen.2022.107521
摘要

Lithium-carbon dioxide (Li-CO2) batteries, especially solid-state Li-CO2 batteries, have attracted much attention due to the high energy density and potential application of carbon neutrality. However, the extremely sluggish kinetics of CO2 evolution reaction in the batteries result in a notorious high-charge-potential over 4.0 V, thus impeding the development of Li-CO2 batteries. Here, by in-situ constructing a plasmonic Ru/Li2CO3-based heterostructure, we report an ultra-low charge overpotential and long cycle life solid-state Li-CO2 battery via the energetic hot carries produced by nonradiative decay of localized surface plasmons where solar energy can be efficintly harvested (over 90% absorption efficiency from 200 nm to 1000 nm), concentrated and converted on the plasmonic Ru catalysts. Experimental results show that the plasmonic photothermal catalysis using Ru catalysts can catalyze C-O bond cleavage and construct a plasmonic Ru/Li2CO3-based heterostructure in the battery on discharge, and effectively accelerate the CO2 envolution reaction via injecting the hot carriers generated from the plasmonic Ru catalysts into the discharged Li2CO3-based products on charge. As a result, by using a chemically stable and high Li-ion conductive MSI layer, the battery shows a record low charge potential (2.99 V) even after a long-term cycling (over 450 cycles) operating at 500 mA g−1 at 500 mAh g−1. This battery technology paves the way for developing next-generation high-specific-energy Li-CO2 batteries with carbon neutrality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
simu233发布了新的文献求助10
1秒前
哈哈发布了新的文献求助10
1秒前
深情安青应助hajy采纳,获得10
2秒前
做实验太菜完成签到,获得积分10
2秒前
4秒前
R喻andom发布了新的文献求助10
5秒前
华仔应助徐biao采纳,获得10
5秒前
直率的羊青完成签到,获得积分20
5秒前
szk完成签到,获得积分10
5秒前
顺心迎南发布了新的文献求助10
5秒前
酷波er应助freebird采纳,获得30
5秒前
6秒前
小林太郎应助贪玩南烟采纳,获得20
6秒前
6秒前
6秒前
Pjmeng完成签到,获得积分10
6秒前
万能图书馆应助江桥采纳,获得10
7秒前
赘婿应助AA采纳,获得10
7秒前
8秒前
Gloyxtg发布了新的文献求助10
8秒前
田様应助wawa采纳,获得10
9秒前
9秒前
9秒前
DDDD应助伶俐如南采纳,获得30
10秒前
liuliqiong完成签到,获得积分10
10秒前
10秒前
哈哈哈哈完成签到 ,获得积分10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
11秒前
苏卿应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
VDC应助科研通管家采纳,获得30
11秒前
11秒前
慕青应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
VDC应助科研通管家采纳,获得30
11秒前
打打应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199