Carbon Emission and Structure Analysis of Transport Industry Based on Input-output Method: China as an Example

中国 碳纤维 经济 环境科学 数学 算法 政治学 复合数 法学
作者
Manzhi Liu,Jinfeng Wang,Jixin Wen,Gang He,Jixin Wu,Hong‐Yuan Chen,Xiaotao Yang
出处
期刊:Sustainable Production and Consumption [Elsevier]
卷期号:33: 168-188 被引量:23
标识
DOI:10.1016/j.spc.2022.06.021
摘要

Due to its enormous carbon dioxide emissions, China's transport industry has become a key area for energy conservation and emission reduction. In this study, we employ the input-output method to examine the carbon dioxide emissions caused by the transport industry's energy consumption. In addition, the structure decomposition method is used to analyze the transport industry's carbon dioxide emissions in depth. The results of the research work deserve the attention of policy makers. First, the direct and indirect carbon dioxide emissions of road transport account for 53 % and 47 % of the transport industry. Second, the direct and indirect carbon dioxide emissions caused by consumption expenditure account for 55 % and 56 % of the final use structure respectively. Third, the carbon dioxide emissions produced by the five heavy industries when meeting the final use of the transport industry account for 75 % of all industries. Fourth, the adjustment of energy structure and energy intensity is expected to reduce the carbon dioxide emissions of the transport industry by 101,963 and 128,313kt in 2035 compared with the baseline scenario. The results indicate that, to control carbon dioxide emissions in the transport industry, special attention should be paid to road transport activity, consumption expenditure in the transport industry, the influence of other heavy industries, the adjustment of energy structure and energy intensity. Consequently, informatization of road transportation, development of public transportation, investment in high-tech industries, and aggressive development of clean energy become essential strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木仔仔发布了新的文献求助10
刚刚
科研小白发布了新的文献求助10
刚刚
青耕完成签到 ,获得积分10
1秒前
HSJ完成签到 ,获得积分10
1秒前
威fly完成签到,获得积分10
1秒前
2秒前
万能图书馆应助沐尚橙采纳,获得10
2秒前
YCG完成签到,获得积分20
3秒前
幽默的寒蕾完成签到,获得积分10
3秒前
斯文败类应助轻松的鸿煊采纳,获得10
4秒前
Owen应助zwenng采纳,获得10
4秒前
ikea1984完成签到,获得积分10
5秒前
5秒前
5秒前
cc发布了新的文献求助10
5秒前
小蘑菇应助老仙翁采纳,获得10
6秒前
7秒前
7秒前
良辰发布了新的文献求助10
7秒前
王海涛发布了新的文献求助10
8秒前
9秒前
wanci应助DoctorDiDi采纳,获得10
9秒前
星辰大海应助严昌采纳,获得10
10秒前
10秒前
飘逸晓曼发布了新的文献求助10
11秒前
夜雨声烦已上线完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
科研通AI2S应助jbear采纳,获得10
14秒前
赘婿应助cc采纳,获得30
14秒前
15秒前
15秒前
来者完成签到,获得积分10
15秒前
科研小白完成签到,获得积分10
16秒前
山羊穿毛衣完成签到,获得积分0
17秒前
LZHWSND发布了新的文献求助10
18秒前
19秒前
19秒前
乐乐应助ddstty采纳,获得10
19秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129103
求助须知:如何正确求助?哪些是违规求助? 2779953
关于积分的说明 7745314
捐赠科研通 2435069
什么是DOI,文献DOI怎么找? 1293897
科研通“疑难数据库(出版商)”最低求助积分说明 623472
版权声明 600542