Deep Learning–based Post Hoc CT Denoising for Myocardial Delayed Enhancement

医学 析因分析 人工智能 事后 内科学 计算机科学
作者
Tatsuya Nishii,Takuma Kobayashi,Hironori Tanaka,Akiyuki Kotoku,Yoshiji Ohta,Yoshiaki Morita,Kensuke Umehara,Junko Ota,Hiroki Horinouchi,Takayuki Ishida,Tetsuya Fukuda
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (1): 82-91 被引量:11
标识
DOI:10.1148/radiol.220189
摘要

Background To improve myocardial delayed enhancement (MDE) CT, a deep learning (DL)-based post hoc denoising method supervised with averaged MDE CT data was developed. Purpose To assess the image quality of denoised MDE CT images and evaluate their diagnostic performance by using late gadolinium enhancement (LGE) MRI as a reference. Materials and methods MDE CT data obtained by averaging three acquisitions with a single breath hold 5 minutes after the contrast material injection in patients from July 2020 to October 2021 were retrospectively reviewed. Preaveraged images obtained in 100 patients as inputs and averaged images as ground truths were used to supervise a residual dense network (RDN). The original single-shot image, standard averaged image, RDN-denoised original (DLoriginal) image, and RDN-denoised averaged (DLave) image of holdout cases were compared. In 40 patients, the CT value and image noise in the left ventricular cavity and myocardium were assessed. The segmental presence of MDE in the remaining 40 patients who underwent reference LGE MRI was evaluated. The sensitivity, specificity, and accuracy of each type of CT image and the improvement in accuracy achieved with the RDN were assessed using odds ratios (ORs) estimated with the generalized estimation equation. Results Overall, 180 patients (median age, 66 years [IQR, 53-74 years]; 107 men) were included. The RDN reduced image noise to 28% of the original level while maintaining equivalence in the CT values (P < .001 for all). The sensitivity, specificity, and accuracy of the original images were 77.9%, 84.4%, and 82.3%, of the averaged images were 89.7%, 87.9%, and 88.5%, of the DLoriginal images were 93.1%, 87.5%, and 89.3%, and of the DLave images were 95.1%, 93.1%, and 93.8%, respectively. DLoriginal images showed improved accuracy compared with the original images (OR, 1.8 [95% CI: 1.2, 2.9]; P = .011) and DLave images showed improved accuracy compared with the averaged images (OR, 2.0 [95% CI: 1.2, 3.5]; P = .009). Conclusion The proposed denoising network supervised with averaged CT images reduced image noise and improved the diagnostic performance for myocardial delayed enhancement CT. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Vannier and Wang in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
缥缈幻桃发布了新的文献求助10
2秒前
王富贵发布了新的文献求助10
4秒前
4秒前
5秒前
7秒前
CHEN完成签到,获得积分10
9秒前
啊七发布了新的文献求助10
10秒前
lukey完成签到,获得积分10
10秒前
11秒前
缥缈幻桃完成签到,获得积分20
11秒前
温柔若颜发布了新的文献求助30
11秒前
在水一方应助Xudong采纳,获得10
12秒前
宣谷雪发布了新的文献求助10
16秒前
18秒前
hhh完成签到,获得积分10
18秒前
19秒前
fei完成签到,获得积分10
20秒前
小peng完成签到,获得积分10
20秒前
20秒前
ee完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
hhh完成签到,获得积分10
21秒前
grey发布了新的文献求助10
21秒前
宣谷雪完成签到,获得积分10
22秒前
22秒前
Kevin发布了新的文献求助10
23秒前
xiaocui完成签到,获得积分10
23秒前
小蘑菇应助TJW采纳,获得30
24秒前
小peng发布了新的文献求助10
24秒前
24秒前
善学以致用应助hhh采纳,获得10
26秒前
科目三应助cheems采纳,获得10
28秒前
北海qy完成签到,获得积分10
28秒前
寒冷的亦凝完成签到,获得积分10
29秒前
30秒前
Lucas应助小peng采纳,获得30
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149289
求助须知:如何正确求助?哪些是违规求助? 2800391
关于积分的说明 7839862
捐赠科研通 2457980
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706