A novel machine learning model and a public online prediction platform for prediction of post-ERCP-cholecystitis (PEC)

医学 逻辑回归 内镜逆行胰胆管造影术 接收机工作特性 预测建模 曲线下面积 胆管 胆总管 试验预测值 预测值 内科学 胰腺炎 统计 数学
作者
Xu Zhang,Ping Yue,Jinduo Zhang,Man Yang,Jinhua Chen,Bowen Zhang,Wei Luo,Mingyuan Wang,Zijian Da,Yanyan Lin,Wence Zhou,Lei Zhang,Kexiang Zhu,Yu Ren,Liping Yang,Shuyan Li,Jinqiu Yuan,Wenbo Meng,Joseph W. Leung,Xun� Li
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:48: 101431-101431 被引量:16
标识
DOI:10.1016/j.eclinm.2022.101431
摘要

Endoscopic retrograde cholangiopancreatography (ERCP) is an established treatment for common bile duct (CBD) stones. Post- ERCP cholecystitis (PEC) is a known complication of such procedure and there are no effective models and clinical applicable tools for PEC prediction.A random forest (RF) machine learning model was developed to predict PEC. Eligible patients at The First Hospital of Lanzhou University in China with common bile duct (CBD) stones and gallbladders in-situ were enrolled from 2010 to 2019. Logistic regression analysis was used to compare the predictive discrimination and accuracy values based on receiver operation characteristics (ROC) curve and decision and clinical impact curve. The RF model was further validated by another 117 patients. This study was registered with ClinicalTrials.gov, NCT04234126.A total of 1117 patients were enrolled (90 PEC, 8.06%) to build the predictive model for PEC. The RF method identified white blood cell (WBC) count, endoscopic papillary balloon dilatation (EPBD), increase in WBC, residual CBD stones after ERCP, serum amylase levels, and mechanical lithotripsy as the top six predictive factors and has a sensitivity of 0.822, specificity of 0.853 and accuracy of 0.855, with the area under curve (AUC) value of 0.890. A separate logistic regression prediction model was built with sensitivity, specificity, and AUC of 0.811, 0.791, and 0.864, respectively. An additional 117 patients (11 PEC, 9.40%) were used to validate the RF model, with an AUC of 0.889 compared to an AUC of 0.884 with the logistic regression model.The results suggest that the proposed RF model based on the top six PEC risk factors could be a promising tool to predict the occurrence of PEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小龙仔123发布了新的文献求助10
刚刚
孤岛完成签到,获得积分10
1秒前
胖墩儿驾到完成签到,获得积分10
1秒前
2秒前
阚钲翰发布了新的文献求助10
3秒前
不安的白昼完成签到 ,获得积分10
3秒前
初夏完成签到,获得积分10
3秒前
4秒前
费小曼完成签到,获得积分10
4秒前
李建科完成签到,获得积分10
5秒前
5秒前
所所应助sylnd126采纳,获得10
6秒前
标致的方盒完成签到,获得积分10
6秒前
GUMC发布了新的文献求助10
6秒前
李田田完成签到,获得积分10
7秒前
甄的艾你完成签到,获得积分10
7秒前
海德堡发布了新的文献求助10
8秒前
8秒前
9秒前
ybwei2008_163发布了新的文献求助10
11秒前
yu完成签到 ,获得积分10
11秒前
mm发布了新的文献求助10
12秒前
Lauren完成签到 ,获得积分10
12秒前
个性雁开完成签到,获得积分10
13秒前
19秒前
21秒前
asni12完成签到,获得积分10
22秒前
飞快的珩完成签到,获得积分10
22秒前
海德堡完成签到,获得积分10
23秒前
杨抠脚完成签到,获得积分10
25秒前
是个憨憨完成签到,获得积分10
25秒前
sylnd126发布了新的文献求助10
26秒前
文武兼备完成签到,获得积分10
26秒前
KIKIKI完成签到,获得积分10
27秒前
ybwei2008_163发布了新的文献求助10
27秒前
阚钲翰完成签到,获得积分10
27秒前
jay发布了新的文献求助10
28秒前
KIKIKI发布了新的文献求助20
30秒前
yuan完成签到,获得积分10
31秒前
湖以完成签到 ,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278