已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel machine learning model and a public online prediction platform for prediction of post-ERCP-cholecystitis (PEC)

医学 逻辑回归 内镜逆行胰胆管造影术 接收机工作特性 预测建模 曲线下面积 胆管 胆总管 试验预测值 预测值 内科学 胰腺炎 统计 数学
作者
Xu Zhang,Ping Yue,Jinduo Zhang,Man Yang,Jinhua Chen,Bowen Zhang,Wei Luo,Mingyuan Wang,Zijian Da,Yanyan Lin,Wence Zhou,Lei Zhang,Kexiang Zhu,Yu Ren,Liping Yang,Shuyan Li,Jinqiu Yuan,Wenbo Meng,Joseph W. Leung,Xun� Li
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:48: 101431-101431 被引量:16
标识
DOI:10.1016/j.eclinm.2022.101431
摘要

Endoscopic retrograde cholangiopancreatography (ERCP) is an established treatment for common bile duct (CBD) stones. Post- ERCP cholecystitis (PEC) is a known complication of such procedure and there are no effective models and clinical applicable tools for PEC prediction.A random forest (RF) machine learning model was developed to predict PEC. Eligible patients at The First Hospital of Lanzhou University in China with common bile duct (CBD) stones and gallbladders in-situ were enrolled from 2010 to 2019. Logistic regression analysis was used to compare the predictive discrimination and accuracy values based on receiver operation characteristics (ROC) curve and decision and clinical impact curve. The RF model was further validated by another 117 patients. This study was registered with ClinicalTrials.gov, NCT04234126.A total of 1117 patients were enrolled (90 PEC, 8.06%) to build the predictive model for PEC. The RF method identified white blood cell (WBC) count, endoscopic papillary balloon dilatation (EPBD), increase in WBC, residual CBD stones after ERCP, serum amylase levels, and mechanical lithotripsy as the top six predictive factors and has a sensitivity of 0.822, specificity of 0.853 and accuracy of 0.855, with the area under curve (AUC) value of 0.890. A separate logistic regression prediction model was built with sensitivity, specificity, and AUC of 0.811, 0.791, and 0.864, respectively. An additional 117 patients (11 PEC, 9.40%) were used to validate the RF model, with an AUC of 0.889 compared to an AUC of 0.884 with the logistic regression model.The results suggest that the proposed RF model based on the top six PEC risk factors could be a promising tool to predict the occurrence of PEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴蜜蜂完成签到 ,获得积分10
1秒前
上官若男应助btmy16采纳,获得10
2秒前
香蕉觅云应助快乐的易巧采纳,获得10
4秒前
纭声完成签到 ,获得积分10
4秒前
牛乃唐完成签到 ,获得积分10
9秒前
11秒前
傲娇的棉花糖完成签到 ,获得积分10
11秒前
伟川周完成签到 ,获得积分10
11秒前
何hyy完成签到,获得积分10
12秒前
香山叶正红完成签到 ,获得积分10
13秒前
abandon发布了新的文献求助10
17秒前
荷兰香猪完成签到,获得积分10
17秒前
涵涵涵hh完成签到 ,获得积分10
20秒前
七号在野闪闪完成签到 ,获得积分10
20秒前
24秒前
27秒前
Zr发布了新的文献求助10
28秒前
28秒前
GingerF应助科研通管家采纳,获得50
29秒前
orixero应助科研通管家采纳,获得10
29秒前
GingerF应助科研通管家采纳,获得50
29秒前
浮游应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
GingerF应助科研通管家采纳,获得50
29秒前
GingerF应助科研通管家采纳,获得50
29秒前
GingerF应助科研通管家采纳,获得50
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
30秒前
30秒前
32秒前
mwm完成签到 ,获得积分10
32秒前
Zr完成签到,获得积分10
36秒前
wtt完成签到,获得积分10
38秒前
大爱人生完成签到 ,获得积分10
40秒前
yaosan完成签到,获得积分10
40秒前
学术脑袋完成签到 ,获得积分10
42秒前
46秒前
自然完成签到,获得积分10
46秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136576
求助须知:如何正确求助?哪些是违规求助? 4336698
关于积分的说明 13510319
捐赠科研通 4174759
什么是DOI,文献DOI怎么找? 2289071
邀请新用户注册赠送积分活动 1289750
关于科研通互助平台的介绍 1231062