A novel machine learning model and a public online prediction platform for prediction of post-ERCP-cholecystitis (PEC)

医学 逻辑回归 内镜逆行胰胆管造影术 接收机工作特性 预测建模 曲线下面积 胆管 胆总管 试验预测值 预测值 内科学 胰腺炎 统计 数学
作者
Xu Zhang,Ping Yue,Jinduo Zhang,Man Yang,Jinhua Chen,Bowen Zhang,Wei Luo,Mingyuan Wang,Zijian Da,Yanyan Lin,Wence Zhou,Lei Zhang,Kexiang Zhu,Yu Ren,Liping Yang,Shuyan Li,Jinqiu Yuan,Wenbo Meng,Joseph W. Leung,Xun� Li
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:48: 101431-101431 被引量:16
标识
DOI:10.1016/j.eclinm.2022.101431
摘要

Endoscopic retrograde cholangiopancreatography (ERCP) is an established treatment for common bile duct (CBD) stones. Post- ERCP cholecystitis (PEC) is a known complication of such procedure and there are no effective models and clinical applicable tools for PEC prediction.A random forest (RF) machine learning model was developed to predict PEC. Eligible patients at The First Hospital of Lanzhou University in China with common bile duct (CBD) stones and gallbladders in-situ were enrolled from 2010 to 2019. Logistic regression analysis was used to compare the predictive discrimination and accuracy values based on receiver operation characteristics (ROC) curve and decision and clinical impact curve. The RF model was further validated by another 117 patients. This study was registered with ClinicalTrials.gov, NCT04234126.A total of 1117 patients were enrolled (90 PEC, 8.06%) to build the predictive model for PEC. The RF method identified white blood cell (WBC) count, endoscopic papillary balloon dilatation (EPBD), increase in WBC, residual CBD stones after ERCP, serum amylase levels, and mechanical lithotripsy as the top six predictive factors and has a sensitivity of 0.822, specificity of 0.853 and accuracy of 0.855, with the area under curve (AUC) value of 0.890. A separate logistic regression prediction model was built with sensitivity, specificity, and AUC of 0.811, 0.791, and 0.864, respectively. An additional 117 patients (11 PEC, 9.40%) were used to validate the RF model, with an AUC of 0.889 compared to an AUC of 0.884 with the logistic regression model.The results suggest that the proposed RF model based on the top six PEC risk factors could be a promising tool to predict the occurrence of PEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老福贵儿应助年年年年采纳,获得30
2秒前
追忆淮发布了新的文献求助10
2秒前
xm完成签到,获得积分10
4秒前
Akim应助Polar_bear采纳,获得10
4秒前
5秒前
5秒前
5秒前
打打应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
coco应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
嘉熙完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助30
8秒前
善学以致用应助wanci采纳,获得10
8秒前
9秒前
10秒前
司予发布了新的文献求助10
11秒前
madman发布了新的文献求助10
11秒前
oohey发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717876
求助须知:如何正确求助?哪些是违规求助? 5248544
关于积分的说明 15283419
捐赠科研通 4867955
什么是DOI,文献DOI怎么找? 2613964
邀请新用户注册赠送积分活动 1563866
关于科研通互助平台的介绍 1521350