A novel machine learning model and a public online prediction platform for prediction of post-ERCP-cholecystitis (PEC)

医学 逻辑回归 内镜逆行胰胆管造影术 接收机工作特性 预测建模 曲线下面积 胆管 胆总管 试验预测值 预测值 内科学 胰腺炎 统计 数学
作者
Xu Zhang,Ping Yue,Jinduo Zhang,Man Yang,Jinhua Chen,Bowen Zhang,Wei Luo,Mingyuan Wang,Zijian Da,Yanyan Lin,Wence Zhou,Lei Zhang,Kexiang Zhu,Yu Ren,Liping Yang,Shuyan Li,Jinqiu Yuan,Wenbo Meng,Joseph W. Leung,Xun� Li
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:48: 101431-101431 被引量:16
标识
DOI:10.1016/j.eclinm.2022.101431
摘要

Endoscopic retrograde cholangiopancreatography (ERCP) is an established treatment for common bile duct (CBD) stones. Post- ERCP cholecystitis (PEC) is a known complication of such procedure and there are no effective models and clinical applicable tools for PEC prediction.A random forest (RF) machine learning model was developed to predict PEC. Eligible patients at The First Hospital of Lanzhou University in China with common bile duct (CBD) stones and gallbladders in-situ were enrolled from 2010 to 2019. Logistic regression analysis was used to compare the predictive discrimination and accuracy values based on receiver operation characteristics (ROC) curve and decision and clinical impact curve. The RF model was further validated by another 117 patients. This study was registered with ClinicalTrials.gov, NCT04234126.A total of 1117 patients were enrolled (90 PEC, 8.06%) to build the predictive model for PEC. The RF method identified white blood cell (WBC) count, endoscopic papillary balloon dilatation (EPBD), increase in WBC, residual CBD stones after ERCP, serum amylase levels, and mechanical lithotripsy as the top six predictive factors and has a sensitivity of 0.822, specificity of 0.853 and accuracy of 0.855, with the area under curve (AUC) value of 0.890. A separate logistic regression prediction model was built with sensitivity, specificity, and AUC of 0.811, 0.791, and 0.864, respectively. An additional 117 patients (11 PEC, 9.40%) were used to validate the RF model, with an AUC of 0.889 compared to an AUC of 0.884 with the logistic regression model.The results suggest that the proposed RF model based on the top six PEC risk factors could be a promising tool to predict the occurrence of PEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助承欢采纳,获得10
刚刚
LTYYY发布了新的文献求助10
刚刚
hw完成签到 ,获得积分10
1秒前
香蕉觅云应助垣味栗子酱采纳,获得10
1秒前
2秒前
大模型应助玖锱采纳,获得10
2秒前
阿芙乐尔完成签到 ,获得积分10
3秒前
zj完成签到,获得积分10
3秒前
3秒前
3秒前
wanci应助majf采纳,获得10
4秒前
4秒前
mazouri完成签到,获得积分10
4秒前
4秒前
子车茗应助快乐橘子采纳,获得30
5秒前
5秒前
顺顺黎黎发布了新的文献求助20
5秒前
糊涂的老师完成签到,获得积分20
5秒前
Hello应助Sunshine采纳,获得10
6秒前
Criminology34应助明杰采纳,获得10
6秒前
6秒前
Army616发布了新的文献求助10
6秒前
7秒前
7秒前
子车茗应助啦啦小王~采纳,获得30
7秒前
8秒前
8秒前
纷飞漫天寂寥完成签到,获得积分10
8秒前
8秒前
糖醋麻辣味土豆完成签到,获得积分20
8秒前
故事完成签到,获得积分10
9秒前
Cast_Lappland完成签到,获得积分10
10秒前
10秒前
专注思远发布了新的文献求助10
11秒前
帅气绝施发布了新的文献求助10
11秒前
Albert完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
上官若男应助孤独傲松采纳,获得10
11秒前
sharppanda发布了新的文献求助10
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587131
求助须知:如何正确求助?哪些是违规求助? 4670288
关于积分的说明 14782246
捐赠科研通 4622203
什么是DOI,文献DOI怎么找? 2531157
邀请新用户注册赠送积分活动 1499937
关于科研通互助平台的介绍 1468024