A novel machine learning model and a public online prediction platform for prediction of post-ERCP-cholecystitis (PEC)

医学 逻辑回归 内镜逆行胰胆管造影术 接收机工作特性 预测建模 曲线下面积 胆管 胆总管 试验预测值 预测值 内科学 胰腺炎 统计 数学
作者
Xu Zhang,Ping Yue,Jinduo Zhang,Man Yang,Jinhua Chen,Bowen Zhang,Wei Luo,Mingyuan Wang,Zijian Da,Yanyan Lin,Wence Zhou,Lei Zhang,Kexiang Zhu,Yu Ren,Liping Yang,Shuyan Li,Jinqiu Yuan,Wenbo Meng,Joseph W. Leung,Xun� Li
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:48: 101431-101431 被引量:16
标识
DOI:10.1016/j.eclinm.2022.101431
摘要

Endoscopic retrograde cholangiopancreatography (ERCP) is an established treatment for common bile duct (CBD) stones. Post- ERCP cholecystitis (PEC) is a known complication of such procedure and there are no effective models and clinical applicable tools for PEC prediction.A random forest (RF) machine learning model was developed to predict PEC. Eligible patients at The First Hospital of Lanzhou University in China with common bile duct (CBD) stones and gallbladders in-situ were enrolled from 2010 to 2019. Logistic regression analysis was used to compare the predictive discrimination and accuracy values based on receiver operation characteristics (ROC) curve and decision and clinical impact curve. The RF model was further validated by another 117 patients. This study was registered with ClinicalTrials.gov, NCT04234126.A total of 1117 patients were enrolled (90 PEC, 8.06%) to build the predictive model for PEC. The RF method identified white blood cell (WBC) count, endoscopic papillary balloon dilatation (EPBD), increase in WBC, residual CBD stones after ERCP, serum amylase levels, and mechanical lithotripsy as the top six predictive factors and has a sensitivity of 0.822, specificity of 0.853 and accuracy of 0.855, with the area under curve (AUC) value of 0.890. A separate logistic regression prediction model was built with sensitivity, specificity, and AUC of 0.811, 0.791, and 0.864, respectively. An additional 117 patients (11 PEC, 9.40%) were used to validate the RF model, with an AUC of 0.889 compared to an AUC of 0.884 with the logistic regression model.The results suggest that the proposed RF model based on the top six PEC risk factors could be a promising tool to predict the occurrence of PEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
都要多喝水完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
火星上的雨柏完成签到 ,获得积分10
3秒前
landy完成签到 ,获得积分10
3秒前
吼吼应助蔡从安采纳,获得10
3秒前
庄海棠完成签到 ,获得积分10
4秒前
子非愚完成签到 ,获得积分10
5秒前
5秒前
等待的幼晴完成签到,获得积分10
5秒前
欢呼的丁真完成签到,获得积分10
6秒前
甜屁儿完成签到 ,获得积分10
6秒前
历史真相发布了新的文献求助10
8秒前
ygmygqdss完成签到 ,获得积分10
8秒前
11秒前
Vincent完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
17秒前
潇湘完成签到 ,获得积分10
18秒前
青黛完成签到 ,获得积分10
19秒前
fqpang发布了新的文献求助10
19秒前
20秒前
利好完成签到 ,获得积分10
21秒前
饱满烙完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
HaoHao04完成签到 ,获得积分10
22秒前
神经蛙完成签到 ,获得积分10
26秒前
27秒前
tt19960503完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
花花屯屯完成签到 ,获得积分10
37秒前
爱科研的小李完成签到 ,获得积分10
38秒前
wakawaka完成签到 ,获得积分10
38秒前
含光完成签到,获得积分10
40秒前
vinni完成签到 ,获得积分10
40秒前
bear发布了新的文献求助10
42秒前
吉祥高趙完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
44秒前
chiien完成签到 ,获得积分10
52秒前
果果完成签到,获得积分10
53秒前
木子雨完成签到 ,获得积分10
53秒前
32429606完成签到 ,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936