亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel machine learning model and a public online prediction platform for prediction of post-ERCP-cholecystitis (PEC)

医学 逻辑回归 内镜逆行胰胆管造影术 接收机工作特性 预测建模 曲线下面积 胆管 胆总管 试验预测值 预测值 内科学 胰腺炎 统计 数学
作者
Xu Zhang,Ping Yue,Jinduo Zhang,Man Yang,Jinhua Chen,Bowen Zhang,Wei Luo,Mingyuan Wang,Zijian Da,Yanyan Lin,Wence Zhou,Lei Zhang,Kexiang Zhu,Yu Ren,Liping Yang,Shuyan Li,Jinqiu Yuan,Wenbo Meng,Joseph W. Leung,Xun� Li
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:48: 101431-101431 被引量:16
标识
DOI:10.1016/j.eclinm.2022.101431
摘要

Endoscopic retrograde cholangiopancreatography (ERCP) is an established treatment for common bile duct (CBD) stones. Post- ERCP cholecystitis (PEC) is a known complication of such procedure and there are no effective models and clinical applicable tools for PEC prediction.A random forest (RF) machine learning model was developed to predict PEC. Eligible patients at The First Hospital of Lanzhou University in China with common bile duct (CBD) stones and gallbladders in-situ were enrolled from 2010 to 2019. Logistic regression analysis was used to compare the predictive discrimination and accuracy values based on receiver operation characteristics (ROC) curve and decision and clinical impact curve. The RF model was further validated by another 117 patients. This study was registered with ClinicalTrials.gov, NCT04234126.A total of 1117 patients were enrolled (90 PEC, 8.06%) to build the predictive model for PEC. The RF method identified white blood cell (WBC) count, endoscopic papillary balloon dilatation (EPBD), increase in WBC, residual CBD stones after ERCP, serum amylase levels, and mechanical lithotripsy as the top six predictive factors and has a sensitivity of 0.822, specificity of 0.853 and accuracy of 0.855, with the area under curve (AUC) value of 0.890. A separate logistic regression prediction model was built with sensitivity, specificity, and AUC of 0.811, 0.791, and 0.864, respectively. An additional 117 patients (11 PEC, 9.40%) were used to validate the RF model, with an AUC of 0.889 compared to an AUC of 0.884 with the logistic regression model.The results suggest that the proposed RF model based on the top six PEC risk factors could be a promising tool to predict the occurrence of PEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
10秒前
11秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
爆米花应助郭也采纳,获得10
16秒前
安详烤鸡发布了新的文献求助10
17秒前
废寝忘食完成签到,获得积分10
17秒前
废寝忘食发布了新的文献求助10
20秒前
24秒前
Nini完成签到,获得积分10
28秒前
43秒前
zzzxh发布了新的文献求助10
47秒前
喜悦的小土豆完成签到 ,获得积分10
47秒前
无花果应助唠叨的秋蝶采纳,获得10
50秒前
zzzxh完成签到,获得积分10
55秒前
56秒前
59秒前
caca完成签到,获得积分0
1分钟前
Leon完成签到 ,获得积分10
1分钟前
多喝水完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Ava应助Zola采纳,获得10
1分钟前
郭也发布了新的文献求助10
1分钟前
1分钟前
大模型应助琪琪采纳,获得10
1分钟前
顾矜应助柠檬黄采纳,获得20
1分钟前
风趣手链发布了新的文献求助10
1分钟前
zqq完成签到,获得积分0
1分钟前
2分钟前
柠檬黄发布了新的文献求助20
2分钟前
2分钟前
琪琪发布了新的文献求助10
2分钟前
blue完成签到 ,获得积分10
2分钟前
郭也完成签到,获得积分10
2分钟前
2分钟前
Zola发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432252
求助须知:如何正确求助?哪些是违规求助? 4544983
关于积分的说明 14194937
捐赠科研通 4464282
什么是DOI,文献DOI怎么找? 2447047
邀请新用户注册赠送积分活动 1438358
关于科研通互助平台的介绍 1415216