Rethinking Saliency Map: A Context-Aware Perturbation Method to Explain EEG-Based Deep Learning Model

脑电图 计算机科学 人工智能 深度学习 背景(考古学) 机器学习 突出 模式识别(心理学) 心理学 神经科学 古生物学 生物
作者
Hanqi Wang,Xiaoguang Zhu,Tao Chen,Chengfang Li,Liang Song
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (5): 1462-1472 被引量:5
标识
DOI:10.1109/tbme.2022.3218116
摘要

Deep learning is widely used to decode the electroencephalogram (EEG) signal. However, there are few attempts to specifically study how to explain EEG-based deep learning models. In this paper, we review the related works that attempt to explain EEG-based models. And we find that the existing methods are not perfect enough to explain the EEG-based model due to the non-stationary nature, high inter-subject variability and dependency of EEG data. The characteristics of the EEG data require the explanation to incorporate the instance-level saliency identification and the context information of EEG data. Recently, mask perturbation is proposed to explain deep learning model. Inspired by the mask perturbation, we propose a new context-aware perturbation method to address these concerns. Our method not only extends the scope to the instance level but can capture the representative context information when estimating the saliency map. In addition, we point out another role of context information in explaining the EEG-based model. The context information can also help suppress the artifacts in the EEG-based deep learning model. In practice, some users might want a simple version of the explanation, which only indicates a few features as salient points. To further improve the usability of our method, we propose an optional area limitation strategy to restrict the highlighted region. In the experiment section, we select three representative EEG-based models and implement them on the emotional EEG dataset DEAP. The results of the experiments support the advantages of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打工人不酷完成签到 ,获得积分10
2秒前
3秒前
5秒前
背后丹妗发布了新的文献求助10
5秒前
6秒前
6秒前
小凯同学完成签到 ,获得积分10
6秒前
hanleiharry1发布了新的文献求助10
8秒前
8秒前
8秒前
善良冷松发布了新的文献求助10
8秒前
10秒前
在水一方应助一定行采纳,获得10
11秒前
11秒前
11秒前
NexusExplorer应助快乐一江采纳,获得10
12秒前
12秒前
科研通AI5应助Lcccccc采纳,获得10
12秒前
在水一方应助杰2580采纳,获得10
15秒前
幸福大白发布了新的文献求助30
15秒前
Jasmine发布了新的文献求助10
15秒前
16秒前
善良冷松完成签到,获得积分10
16秒前
16秒前
善学以致用应助fengliurencai采纳,获得10
17秒前
个别完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
sihanzhiyu完成签到,获得积分20
20秒前
20秒前
wdy111应助ASZXDW采纳,获得20
22秒前
22秒前
wsj发布了新的文献求助10
22秒前
旧梦发布了新的文献求助10
22秒前
东晓发布了新的文献求助10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174