Rethinking Saliency Map: A Context-Aware Perturbation Method to Explain EEG-Based Deep Learning Model

脑电图 计算机科学 人工智能 深度学习 背景(考古学) 机器学习 突出 模式识别(心理学) 心理学 神经科学 古生物学 生物
作者
Hanqi Wang,Xiaoguang Zhu,Tao Chen,Chengfang Li,Liang Song
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (5): 1462-1472 被引量:5
标识
DOI:10.1109/tbme.2022.3218116
摘要

Deep learning is widely used to decode the electroencephalogram (EEG) signal. However, there are few attempts to specifically study how to explain EEG-based deep learning models. In this paper, we review the related works that attempt to explain EEG-based models. And we find that the existing methods are not perfect enough to explain the EEG-based model due to the non-stationary nature, high inter-subject variability and dependency of EEG data. The characteristics of the EEG data require the explanation to incorporate the instance-level saliency identification and the context information of EEG data. Recently, mask perturbation is proposed to explain deep learning model. Inspired by the mask perturbation, we propose a new context-aware perturbation method to address these concerns. Our method not only extends the scope to the instance level but can capture the representative context information when estimating the saliency map. In addition, we point out another role of context information in explaining the EEG-based model. The context information can also help suppress the artifacts in the EEG-based deep learning model. In practice, some users might want a simple version of the explanation, which only indicates a few features as salient points. To further improve the usability of our method, we propose an optional area limitation strategy to restrict the highlighted region. In the experiment section, we select three representative EEG-based models and implement them on the emotional EEG dataset DEAP. The results of the experiments support the advantages of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiqi完成签到,获得积分10
刚刚
刚刚
刚刚
阳光完成签到,获得积分10
1秒前
1秒前
sxy0604发布了新的文献求助10
1秒前
2秒前
早睡完成签到,获得积分10
2秒前
梅豪发布了新的文献求助20
3秒前
今后应助焱阳采纳,获得10
4秒前
echo发布了新的文献求助10
4秒前
maox1aoxin应助赵时俊采纳,获得30
5秒前
辰辰发布了新的文献求助10
5秒前
6秒前
6秒前
QOP应助mirage采纳,获得10
6秒前
8秒前
苏源智发布了新的文献求助10
8秒前
sensen完成签到,获得积分20
10秒前
田柾国发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
乐观谷南发布了新的文献求助10
12秒前
顺利如冰完成签到,获得积分10
14秒前
爆米花应助诚心的香水采纳,获得10
18秒前
19秒前
科研通AI5应助及川徹采纳,获得10
19秒前
爆米花应助欣慰的盼芙采纳,获得10
19秒前
赘婿应助ztr采纳,获得10
20秒前
莲莲完成签到,获得积分10
22秒前
十力完成签到,获得积分10
23秒前
Rheton完成签到,获得积分10
24秒前
苏源智完成签到,获得积分10
24秒前
南希maggie完成签到,获得积分10
24秒前
科研人完成签到,获得积分10
26秒前
26秒前
30秒前
32秒前
xiao完成签到,获得积分10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670831
求助须知:如何正确求助?哪些是违规求助? 3227720
关于积分的说明 9776920
捐赠科研通 2937932
什么是DOI,文献DOI怎么找? 1609663
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735932