材料科学
极限抗拉强度
延展性(地球科学)
复合材料
复合数
微观结构
烧结
钛
合金
冶金
蠕动
作者
Shaopeng Li,Xiaoyan Wang,Zichao Wei,Yuanfei Han,Huigang Shi,Jianwen Le,Guangfa Huang,Di Zhang,Weijie Lü
标识
DOI:10.1016/j.scriptamat.2022.114835
摘要
This study creatively proposed a technique to effectively overcome the strength-ductility mismatch of the as-sintered titanium matrix composites by in-situ planting TiB nano-fibers and La2O3 nano-particles as ultra-fine networks into the composite powder. (TiB+La2O3)/Ti composites with excellent strength-ductility synergy were fabricated by hot pressing. The ultra-fine network eliminated the Widmanstatten microstructure and exerted a significantly fine-grain effect. Thus, the elongation of the as-sintered 1.2 vol.% (TiB+La2O3)/Ti composite was significantly improved from 2.2 to 10.8% compared with the matrix alloy, and the ultimate tensile strength was simultaneously enhanced to 1098.6 MPa. Meanwhile, the tensile strength of 2.4 vol.% (TiB+La2O3)/Ti reached 774.8 MPa at 600 °C, even superior to many wrought composites. The strength-ductility synergy effects were mainly attributed to the significant fine-grain effect and the synergistic effect between nano-reinforcements and soft matrix. This work opened up a new route for directly sintering nanoparticles reinforced titanium matrix composites components with promising comprehensive properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI