黄斑变性
光学相干层析成像
医学
德鲁森
概化理论
人工智能
深度学习
脉络膜
眼科
验光服务
机器学习
医学物理学
计算机科学
视网膜
心理学
神经科学
发展心理学
作者
Samantha K. Paul,Ian Pan,Warren M. Sobol
出处
期刊:Retina-the Journal of Retinal and Vitreous Diseases
[Ovid Technologies (Wolters Kluwer)]
日期:2022-08-01
卷期号:42 (8): 1417-1424
被引量:11
标识
DOI:10.1097/iae.0000000000003535
摘要
To survey the current literature regarding applications of deep learning to optical coherence tomography in age-related macular degeneration (AMD).A Preferred Reporting Items for Systematic Reviews and Meta-Analyses systematic review was conducted from January 1, 2000, to May 9, 2021, using PubMed and EMBASE databases. Original research investigations that applied deep learning to optical coherence tomography in patients with AMD or features of AMD (choroidal neovascularization, geographic atrophy, and drusen) were included. Summary statements, data set characteristics, and performance metrics were extracted from included articles for analysis.We identified 95 articles for this review. The majority of articles fell into one of six categories: 1) classification of AMD or AMD biomarkers (n = 40); 2) segmentation of AMD biomarkers (n = 20); 3) segmentation of retinal layers or the choroid in patients with AMD (n = 7); 4) assessing treatment response and disease progression (n = 13); 5) predicting visual function (n = 6); and 6) determining the need for referral to a retina specialist (n = 3).Deep learning models generally achieved high performance, at times comparable with that of specialists. However, external validation and experimental parameters enabling reproducibility were often limited. Prospective studies that demonstrate generalizability and clinical utility of these models are needed.
科研通智能强力驱动
Strongly Powered by AbleSci AI