Detecting Distal Radial Fractures from Wrist Radiographs Using a Deep Convolutional Neural Network with an Accuracy Comparable to Hand Orthopedic Surgeons

卷积神经网络 射线照相术 骨科手术 手腕 接收机工作特性 医学 人工智能 放射科 口腔正畸科 核医学 计算机科学 外科 内科学
作者
Takeshi Suzuki,Satoshi Maki,Takahiro Yamazaki,Hiromasa Wakita,Yasunari Toguchi,Manato Horii,Tomonori Yamauchi,Koui Kawamura,Masaaki Aramomi,Hitoshi Sugiyama,Yusuke Matsuura,Takeshi Yamashita,Sumihisa Orita,Seiji Ohtori
出处
期刊:Journal of Digital Imaging [Springer Nature]
卷期号:35 (1): 39-46 被引量:22
标识
DOI:10.1007/s10278-021-00519-1
摘要

In recent years, fracture image diagnosis using a convolutional neural network (CNN) has been reported. The purpose of the present study was to evaluate the ability of CNN to diagnose distal radius fractures (DRFs) using frontal and lateral wrist radiographs. We included 503 cases of DRF diagnosed by plain radiographs and 289 cases without fracture. We implemented the CNN model using Keras and Tensorflow. Frontal and lateral views of wrist radiographs were manually cropped and trained separately. Fine-tuning was performed using EfficientNets. The diagnostic ability of CNN was evaluated using 150 images with and without fractures from anteroposterior and lateral radiographs. The CNN model diagnosed DRF based on three views: frontal view, lateral view, and both frontal and lateral view. We determined the sensitivity, specificity, and accuracy of the CNN model, plotted a receiver operating characteristic (ROC) curve, and calculated the area under the ROC curve (AUC). We further compared performances between the CNN and three hand orthopedic surgeons. EfficientNet-B2 in the frontal view and EfficientNet-B4 in the lateral view showed highest accuracy on the validation dataset, and these models were used for combined views. The accuracy, sensitivity, and specificity of the CNN based on both anteroposterior and lateral radiographs were 99.3, 98.7, and 100, respectively. The accuracy of the CNN was equal to or better than that of three orthopedic surgeons. The AUC of the CNN on the combined views was 0.993. The CNN model exhibited high accuracy in the diagnosis of distal radius fracture with a plain radiograph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll发布了新的文献求助10
1秒前
呆二草关注了科研通微信公众号
2秒前
DD发布了新的文献求助10
3秒前
李欣华完成签到,获得积分10
4秒前
独特的忆彤完成签到 ,获得积分10
5秒前
Steven发布了新的文献求助10
5秒前
5秒前
李健的粉丝团团长应助LIXI采纳,获得10
6秒前
积极上进的小润完成签到,获得积分10
7秒前
重要涔雨发布了新的文献求助10
7秒前
Orange应助木头杨采纳,获得10
8秒前
minidong发布了新的文献求助10
8秒前
9秒前
hhhyyyy发布了新的文献求助10
10秒前
熊小子爱学习完成签到,获得积分10
10秒前
11秒前
zzzg应助Parotodus采纳,获得10
11秒前
哇卡哇卡完成签到,获得积分10
12秒前
123完成签到,获得积分10
14秒前
格非完成签到,获得积分10
14秒前
suzy完成签到,获得积分10
16秒前
春天发布了新的文献求助10
16秒前
Hello应助angel采纳,获得10
17秒前
hexiaoyu发布了新的文献求助10
17秒前
简单的银耳汤完成签到,获得积分10
18秒前
19秒前
zhouzhou完成签到,获得积分10
20秒前
orixero应助春天采纳,获得10
21秒前
21秒前
stick发布了新的文献求助10
24秒前
30秒前
FashionBoy应助Coldpal采纳,获得10
32秒前
木头杨发布了新的文献求助10
33秒前
34秒前
35秒前
36秒前
36秒前
小乔完成签到,获得积分10
38秒前
hhhyyyy发布了新的文献求助10
39秒前
hh发布了新的文献求助10
40秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012