Detecting Distal Radial Fractures from Wrist Radiographs Using a Deep Convolutional Neural Network with an Accuracy Comparable to Hand Orthopedic Surgeons

卷积神经网络 射线照相术 骨科手术 手腕 接收机工作特性 医学 人工智能 放射科 口腔正畸科 核医学 计算机科学 外科 内科学
作者
Takeshi Suzuki,Satoshi Maki,Takahiro Yamazaki,Hiromasa Wakita,Yasunari Toguchi,Manato Horii,Tomonori Yamauchi,Koui Kawamura,Masaaki Aramomi,Hitoshi Sugiyama,Yusuke Matsuura,Takeshi Yamashita,Sumihisa Orita,Seiji Ohtori
出处
期刊:Journal of Digital Imaging [Springer Science+Business Media]
卷期号:35 (1): 39-46 被引量:22
标识
DOI:10.1007/s10278-021-00519-1
摘要

In recent years, fracture image diagnosis using a convolutional neural network (CNN) has been reported. The purpose of the present study was to evaluate the ability of CNN to diagnose distal radius fractures (DRFs) using frontal and lateral wrist radiographs. We included 503 cases of DRF diagnosed by plain radiographs and 289 cases without fracture. We implemented the CNN model using Keras and Tensorflow. Frontal and lateral views of wrist radiographs were manually cropped and trained separately. Fine-tuning was performed using EfficientNets. The diagnostic ability of CNN was evaluated using 150 images with and without fractures from anteroposterior and lateral radiographs. The CNN model diagnosed DRF based on three views: frontal view, lateral view, and both frontal and lateral view. We determined the sensitivity, specificity, and accuracy of the CNN model, plotted a receiver operating characteristic (ROC) curve, and calculated the area under the ROC curve (AUC). We further compared performances between the CNN and three hand orthopedic surgeons. EfficientNet-B2 in the frontal view and EfficientNet-B4 in the lateral view showed highest accuracy on the validation dataset, and these models were used for combined views. The accuracy, sensitivity, and specificity of the CNN based on both anteroposterior and lateral radiographs were 99.3, 98.7, and 100, respectively. The accuracy of the CNN was equal to or better than that of three orthopedic surgeons. The AUC of the CNN on the combined views was 0.993. The CNN model exhibited high accuracy in the diagnosis of distal radius fracture with a plain radiograph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
宁静致远完成签到,获得积分10
1秒前
4秒前
4秒前
有使不完牛劲的正主完成签到 ,获得积分10
5秒前
YL发布了新的文献求助10
6秒前
7秒前
BLDC888发布了新的文献求助30
7秒前
123发布了新的文献求助10
7秒前
7秒前
李健的粉丝团团长应助yuan采纳,获得30
7秒前
MJ发布了新的文献求助10
8秒前
scl发布了新的文献求助10
10秒前
02发布了新的文献求助10
12秒前
12秒前
AAA发布了新的文献求助10
13秒前
zxy发布了新的文献求助10
14秒前
xiao发布了新的文献求助10
15秒前
16秒前
MJ完成签到,获得积分10
17秒前
哈哈哈发布了新的文献求助10
17秒前
呆萌发布了新的文献求助10
17秒前
秉文完成签到,获得积分10
18秒前
王思凯发布了新的文献求助20
19秒前
细心冰之完成签到,获得积分10
19秒前
Luso完成签到 ,获得积分10
22秒前
小樊没烦恼完成签到 ,获得积分10
22秒前
酷波er应助萌萌采纳,获得10
22秒前
朴素的松鼠应助呆萌采纳,获得10
22秒前
充电宝应助云渺采纳,获得10
23秒前
25秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
柯一一应助久久采纳,获得10
26秒前
大个应助合适成风采纳,获得10
26秒前
王思凯完成签到,获得积分20
29秒前
30秒前
31秒前
山泽通气发布了新的文献求助10
31秒前
addd发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309