接收机工作特性
无线电技术
医学
淋巴血管侵犯
超声波
逻辑回归
Lasso(编程语言)
校准
放射科
组内相关
重复性
核医学
人工智能
统计
计算机科学
数学
癌症
内科学
转移
万维网
心理测量学
临床心理学
作者
Yuquan Wu,Ruizhi Gao,Peng Lin,Rong Wen,Haiyuan Li,Meiyan Mou,Fenghuan Chen,Fen Huang,Weijie Zhou,Hong Yang,Yun He,Ji Wu
标识
DOI:10.1186/s12880-022-00813-6
摘要
To investigate whether radiomics based on ultrasound images can predict lymphovascular invasion (LVI) of rectal cancer (RC) before surgery.A total of 203 patients with RC were enrolled retrospectively, and they were divided into a training set (143 patients) and a validation set (60 patients). We extracted the radiomic features from the largest gray ultrasound image of the RC lesion. The intraclass correlation coefficient (ICC) was applied to test the repeatability of the radiomic features. The least absolute shrinkage and selection operator (LASSO) was used to reduce the data dimension and select significant features. Logistic regression (LR) analysis was applied to establish the radiomics model. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the comprehensive performance of the model.Among the 203 patients, 33 (16.7%) were LVI positive and 170 (83.7%) were LVI negative. A total of 5350 (90.1%) radiomic features with ICC values of ≥ 0.75 were reported, which were subsequently subjected to hypothesis testing and LASSO regression dimension reduction analysis. Finally, 15 selected features were used to construct the radiomics model. The area under the curve (AUC) of the training set was 0.849, and the AUC of the validation set was 0.781. The calibration curve indicated that the radiomics model had good calibration, and DCA demonstrated that the model had clinical benefits.The proposed endorectal ultrasound-based radiomics model has the potential to predict LVI preoperatively in RC.
科研通智能强力驱动
Strongly Powered by AbleSci AI