亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An endorectal ultrasound-based radiomics signature for preoperative prediction of lymphovascular invasion of rectal cancer

接收机工作特性 无线电技术 医学 淋巴血管侵犯 超声波 逻辑回归 Lasso(编程语言) 校准 放射科 组内相关 重复性 核医学 人工智能 统计 计算机科学 数学 癌症 内科学 转移 万维网 心理测量学 临床心理学
作者
Yuquan Wu,Ruizhi Gao,Peng Lin,Rong Wen,Haiyuan Li,Meiyan Mou,Fenghuan Chen,Fen Huang,Weijie Zhou,Hong Yang,Yun He,Ji Wu
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:22 (1) 被引量:9
标识
DOI:10.1186/s12880-022-00813-6
摘要

To investigate whether radiomics based on ultrasound images can predict lymphovascular invasion (LVI) of rectal cancer (RC) before surgery.A total of 203 patients with RC were enrolled retrospectively, and they were divided into a training set (143 patients) and a validation set (60 patients). We extracted the radiomic features from the largest gray ultrasound image of the RC lesion. The intraclass correlation coefficient (ICC) was applied to test the repeatability of the radiomic features. The least absolute shrinkage and selection operator (LASSO) was used to reduce the data dimension and select significant features. Logistic regression (LR) analysis was applied to establish the radiomics model. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the comprehensive performance of the model.Among the 203 patients, 33 (16.7%) were LVI positive and 170 (83.7%) were LVI negative. A total of 5350 (90.1%) radiomic features with ICC values of ≥ 0.75 were reported, which were subsequently subjected to hypothesis testing and LASSO regression dimension reduction analysis. Finally, 15 selected features were used to construct the radiomics model. The area under the curve (AUC) of the training set was 0.849, and the AUC of the validation set was 0.781. The calibration curve indicated that the radiomics model had good calibration, and DCA demonstrated that the model had clinical benefits.The proposed endorectal ultrasound-based radiomics model has the potential to predict LVI preoperatively in RC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanwan524完成签到 ,获得积分10
3秒前
CodeCraft应助phd采纳,获得10
10秒前
充电宝应助phd采纳,获得10
18秒前
25秒前
sailingluwl完成签到,获得积分10
28秒前
阿泽发布了新的文献求助10
29秒前
大个应助phd采纳,获得10
33秒前
Criminology34应助科研通管家采纳,获得10
56秒前
Criminology34应助科研通管家采纳,获得10
56秒前
Criminology34应助科研通管家采纳,获得10
56秒前
Criminology34应助科研通管家采纳,获得10
56秒前
Criminology34应助科研通管家采纳,获得10
56秒前
1分钟前
Una完成签到,获得积分10
1分钟前
矮小的向雪完成签到 ,获得积分10
1分钟前
phd发布了新的文献求助10
1分钟前
花开富贵完成签到 ,获得积分10
1分钟前
1分钟前
lei发布了新的文献求助10
1分钟前
Kevin完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
rose发布了新的文献求助20
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
lsl应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
卷卷完成签到 ,获得积分10
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
小b亮完成签到 ,获得积分10
4分钟前
Echo完成签到,获得积分10
4分钟前
奇奇怪怪完成签到,获得积分10
4分钟前
fanhuaxuejin完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
yhh完成签到 ,获得积分10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765318
关于积分的说明 15025565
捐赠科研通 4803089
什么是DOI,文献DOI怎么找? 2567925
邀请新用户注册赠送积分活动 1525479
关于科研通互助平台的介绍 1485004