An endorectal ultrasound-based radiomics signature for preoperative prediction of lymphovascular invasion of rectal cancer

接收机工作特性 无线电技术 医学 淋巴血管侵犯 超声波 逻辑回归 Lasso(编程语言) 校准 放射科 组内相关 重复性 核医学 人工智能 统计 计算机科学 数学 癌症 内科学 转移 万维网 心理测量学 临床心理学
作者
Yuquan Wu,Ruizhi Gao,Peng Lin,Rong Wen,Haiyuan Li,Meiyan Mou,Fenghuan Chen,Fen Huang,Weijie Zhou,Hong Yang,Yun He,Ji Wu
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:22 (1) 被引量:9
标识
DOI:10.1186/s12880-022-00813-6
摘要

To investigate whether radiomics based on ultrasound images can predict lymphovascular invasion (LVI) of rectal cancer (RC) before surgery.A total of 203 patients with RC were enrolled retrospectively, and they were divided into a training set (143 patients) and a validation set (60 patients). We extracted the radiomic features from the largest gray ultrasound image of the RC lesion. The intraclass correlation coefficient (ICC) was applied to test the repeatability of the radiomic features. The least absolute shrinkage and selection operator (LASSO) was used to reduce the data dimension and select significant features. Logistic regression (LR) analysis was applied to establish the radiomics model. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the comprehensive performance of the model.Among the 203 patients, 33 (16.7%) were LVI positive and 170 (83.7%) were LVI negative. A total of 5350 (90.1%) radiomic features with ICC values of ≥ 0.75 were reported, which were subsequently subjected to hypothesis testing and LASSO regression dimension reduction analysis. Finally, 15 selected features were used to construct the radiomics model. The area under the curve (AUC) of the training set was 0.849, and the AUC of the validation set was 0.781. The calibration curve indicated that the radiomics model had good calibration, and DCA demonstrated that the model had clinical benefits.The proposed endorectal ultrasound-based radiomics model has the potential to predict LVI preoperatively in RC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gxzsdf完成签到 ,获得积分10
1秒前
zm完成签到 ,获得积分10
2秒前
付其喜完成签到 ,获得积分10
4秒前
玺青一生完成签到 ,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
10秒前
屈煜彬完成签到 ,获得积分10
11秒前
务实的一斩完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
司空以蕊完成签到 ,获得积分10
17秒前
19秒前
藏锋完成签到 ,获得积分10
20秒前
单小芫完成签到 ,获得积分10
21秒前
然大宝发布了新的文献求助10
24秒前
oleskarabach发布了新的文献求助10
25秒前
科研通AI6应助zhang采纳,获得10
31秒前
32秒前
Cala洛~完成签到 ,获得积分10
33秒前
幼儿园扛把子完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
39秒前
壳聚糖完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
纸条条完成签到 ,获得积分10
50秒前
elsa622完成签到 ,获得积分10
52秒前
陈M雯完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
53秒前
55秒前
痴情的靖柔完成签到 ,获得积分10
55秒前
clwh2006完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
十二倍根号二完成签到,获得积分10
1分钟前
1分钟前
LiangRen完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
wuyan204完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856