An endorectal ultrasound-based radiomics signature for preoperative prediction of lymphovascular invasion of rectal cancer

接收机工作特性 无线电技术 医学 淋巴血管侵犯 超声波 逻辑回归 Lasso(编程语言) 校准 放射科 组内相关 重复性 核医学 人工智能 统计 计算机科学 数学 癌症 内科学 转移 万维网 心理测量学 临床心理学
作者
Yuquan Wu,Ruizhi Gao,Peng Lin,Rong Wen,Haiyuan Li,Meiyan Mou,Fenghuan Chen,Fen Huang,Weijie Zhou,Hong Yang,Yun He,Ji Wu
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:22 (1) 被引量:9
标识
DOI:10.1186/s12880-022-00813-6
摘要

To investigate whether radiomics based on ultrasound images can predict lymphovascular invasion (LVI) of rectal cancer (RC) before surgery.A total of 203 patients with RC were enrolled retrospectively, and they were divided into a training set (143 patients) and a validation set (60 patients). We extracted the radiomic features from the largest gray ultrasound image of the RC lesion. The intraclass correlation coefficient (ICC) was applied to test the repeatability of the radiomic features. The least absolute shrinkage and selection operator (LASSO) was used to reduce the data dimension and select significant features. Logistic regression (LR) analysis was applied to establish the radiomics model. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the comprehensive performance of the model.Among the 203 patients, 33 (16.7%) were LVI positive and 170 (83.7%) were LVI negative. A total of 5350 (90.1%) radiomic features with ICC values of ≥ 0.75 were reported, which were subsequently subjected to hypothesis testing and LASSO regression dimension reduction analysis. Finally, 15 selected features were used to construct the radiomics model. The area under the curve (AUC) of the training set was 0.849, and the AUC of the validation set was 0.781. The calibration curve indicated that the radiomics model had good calibration, and DCA demonstrated that the model had clinical benefits.The proposed endorectal ultrasound-based radiomics model has the potential to predict LVI preoperatively in RC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大池发布了新的文献求助10
1秒前
XYN1完成签到,获得积分10
1秒前
1秒前
毛益聪完成签到,获得积分10
2秒前
滨海发布了新的文献求助10
3秒前
ydy完成签到,获得积分10
3秒前
4秒前
CipherSage应助shushuwuwu采纳,获得10
4秒前
陈益凡驳回了zzk应助
4秒前
4秒前
5秒前
MWT发布了新的文献求助10
5秒前
冷静的服饰完成签到,获得积分20
6秒前
甜甜麦片完成签到,获得积分10
8秒前
我是老大应助ydy采纳,获得10
8秒前
胖虎完成签到,获得积分10
8秒前
万能图书馆应助张夏萌采纳,获得10
8秒前
CY完成签到,获得积分10
9秒前
9秒前
积极寻梅发布了新的文献求助10
9秒前
9秒前
屁王发布了新的文献求助10
10秒前
10秒前
wwsss完成签到,获得积分10
11秒前
高高海安完成签到,获得积分20
13秒前
13秒前
梨色完成签到,获得积分10
14秒前
科研通AI5应助木非采纳,获得10
14秒前
如意的乐天完成签到,获得积分10
14秒前
eltiempo完成签到 ,获得积分10
14秒前
乐乐应助wyj采纳,获得10
14秒前
白云发布了新的文献求助10
15秒前
科研通AI5应助滨海采纳,获得10
15秒前
古灵井盖完成签到,获得积分10
15秒前
平常的无极完成签到,获得积分20
15秒前
可耐的嫣娆完成签到 ,获得积分10
16秒前
草原狼完成签到,获得积分10
16秒前
MWT完成签到,获得积分10
17秒前
yiyi应助积极寻梅采纳,获得10
17秒前
小于要毕业完成签到 ,获得积分10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213290
求助须知:如何正确求助?哪些是违规求助? 4389206
关于积分的说明 13666238
捐赠科研通 4250143
什么是DOI,文献DOI怎么找? 2331945
邀请新用户注册赠送积分活动 1329645
关于科研通互助平台的介绍 1283189