An endorectal ultrasound-based radiomics signature for preoperative prediction of lymphovascular invasion of rectal cancer

接收机工作特性 无线电技术 医学 淋巴血管侵犯 超声波 逻辑回归 Lasso(编程语言) 校准 放射科 组内相关 重复性 核医学 人工智能 统计 计算机科学 数学 癌症 内科学 转移 万维网 心理测量学 临床心理学
作者
Yuquan Wu,Ruizhi Gao,Peng Lin,Rong Wen,Haiyuan Li,Meiyan Mou,Fenghuan Chen,Fen Huang,Weijie Zhou,Hong Yang,Yun He,Ji Wu
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:22 (1) 被引量:9
标识
DOI:10.1186/s12880-022-00813-6
摘要

To investigate whether radiomics based on ultrasound images can predict lymphovascular invasion (LVI) of rectal cancer (RC) before surgery.A total of 203 patients with RC were enrolled retrospectively, and they were divided into a training set (143 patients) and a validation set (60 patients). We extracted the radiomic features from the largest gray ultrasound image of the RC lesion. The intraclass correlation coefficient (ICC) was applied to test the repeatability of the radiomic features. The least absolute shrinkage and selection operator (LASSO) was used to reduce the data dimension and select significant features. Logistic regression (LR) analysis was applied to establish the radiomics model. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the comprehensive performance of the model.Among the 203 patients, 33 (16.7%) were LVI positive and 170 (83.7%) were LVI negative. A total of 5350 (90.1%) radiomic features with ICC values of ≥ 0.75 were reported, which were subsequently subjected to hypothesis testing and LASSO regression dimension reduction analysis. Finally, 15 selected features were used to construct the radiomics model. The area under the curve (AUC) of the training set was 0.849, and the AUC of the validation set was 0.781. The calibration curve indicated that the radiomics model had good calibration, and DCA demonstrated that the model had clinical benefits.The proposed endorectal ultrasound-based radiomics model has the potential to predict LVI preoperatively in RC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guandada发布了新的文献求助10
1秒前
烟花应助俭朴的含海采纳,获得10
1秒前
melody发布了新的文献求助10
2秒前
2秒前
科研通AI6应助Esang采纳,获得10
2秒前
2秒前
薯片片发布了新的文献求助10
3秒前
3秒前
天蓝日月潭完成签到 ,获得积分10
3秒前
shbkmy完成签到,获得积分10
3秒前
兔兔要睡觉完成签到,获得积分10
4秒前
可爱的函函应助fev123采纳,获得10
4秒前
Kaz完成签到,获得积分10
4秒前
天天快乐应助猪肉炖粉条采纳,获得10
5秒前
Li完成签到,获得积分10
6秒前
专注白昼发布了新的文献求助10
6秒前
生动以云完成签到,获得积分20
6秒前
归尘应助顺其自然_666888采纳,获得10
7秒前
Layla101完成签到,获得积分10
7秒前
脑洞疼应助称心的天问采纳,获得10
7秒前
汉堡包应助孙军涛采纳,获得10
7秒前
8秒前
8秒前
lky完成签到,获得积分10
9秒前
尾巴抓不住我完成签到,获得积分10
9秒前
极客晨风发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
秋日繁星完成签到,获得积分20
9秒前
文艺语蓉完成签到 ,获得积分10
10秒前
木子小微完成签到,获得积分10
10秒前
活着完成签到 ,获得积分10
10秒前
自信板栗发布了新的文献求助10
10秒前
铱铱的胡萝卜完成签到,获得积分10
11秒前
chem完成签到,获得积分10
12秒前
13秒前
carlitos发布了新的文献求助10
13秒前
凶狠的雁芙完成签到,获得积分10
13秒前
13秒前
13秒前
无极微光应助小熊梅尼耶采纳,获得20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249