Machine learning assisted development of Fe2P-type magnetocaloric compounds for cryogenic applications

磁制冷 材料科学 等温过程 稀土 热力学 制冷 磁场 冶金 磁化 量子力学 物理
作者
Jiawei Lai,A. Bolyachkin,Noriki Terada,Sae Dieb,Xin Tang,T. Ohkubo,H. Sepehri‐Amin,K. Hono
出处
期刊:Acta Materialia [Elsevier]
卷期号:232: 117942-117942 被引量:24
标识
DOI:10.1016/j.actamat.2022.117942
摘要

Fe2P-type compounds exhibit a giant magnetocaloric effect (MCE) and are extensively studied for room temperature applications. The reduction of their transition temperature below 77 K can pave the way for the potential application of these materials for hydrogen liquefaction using cryogenic magnetic refrigeration. Most of the known magnetocaloric materials with a giant MCE below 77 K are rare-earth-based compounds. In order to explore the possibility of developing rare-earth-free compounds with cryogenic MCE, we collected a dataset by conducting data mining on published experimental results on Fe2P-type magnetocaloric compounds and used machine learning for composition optimization aiming at lowering the transition temperature below 77 K. Guided by the predictions of an artificial neural network, we found a promising composition of Mn1.70Fe0.30P0.63Si0.37 with a transition temperature of 97 K at 1 T magnetic field which was lowered to 73 K by the minor substitution of Fe with Co. The developed rare-earth-free compounds exhibit a large magnetocaloric performance in isothermal magnetic entropy change (∆SM) of 7.5–11.5 J/kgK at the temperatures below 100 K. This study demonstrates that data-driven development of magnetocaloric materials can efficiently boost the optimization of their properties, thus aiding the practical applicability of magnetic refrigeration technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助无私的睫毛采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
张小馨完成签到 ,获得积分10
2秒前
香蕉觅云应助hu医生采纳,获得10
4秒前
5秒前
杨金城发布了新的文献求助10
7秒前
可爱的函函应助阿橘采纳,获得10
7秒前
恐里乔太岁完成签到,获得积分10
7秒前
Kuma发布了新的文献求助10
7秒前
解泽星完成签到,获得积分10
8秒前
8秒前
NiyUBo发布了新的文献求助10
8秒前
8秒前
9秒前
楠小秾完成签到,获得积分10
9秒前
深情安青应助文艺书雪采纳,获得10
10秒前
11秒前
自然的白竹完成签到,获得积分10
11秒前
12秒前
齐俞如完成签到 ,获得积分10
13秒前
13秒前
79发布了新的文献求助10
13秒前
15秒前
15秒前
hfun完成签到,获得积分10
15秒前
15秒前
15秒前
鹿仪发布了新的文献求助30
17秒前
17秒前
18秒前
18秒前
21秒前
阿橘发布了新的文献求助10
23秒前
杳鸢应助snowpie采纳,获得10
23秒前
24秒前
Yihvan发布了新的文献求助10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229292
求助须知:如何正确求助?哪些是违规求助? 2877020
关于积分的说明 8197467
捐赠科研通 2544342
什么是DOI,文献DOI怎么找? 1374310
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621738