Machine learning assisted development of Fe2P-type magnetocaloric compounds for cryogenic applications

磁制冷 材料科学 等温过程 稀土 热力学 制冷 磁场 冶金 磁化 量子力学 物理
作者
Jiawei Lai,A. Bolyachkin,Noriki Terada,Sae Dieb,Xin Tang,T. Ohkubo,H. Sepehri‐Amin,K. Hono
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:232: 117942-117942 被引量:24
标识
DOI:10.1016/j.actamat.2022.117942
摘要

Fe2P-type compounds exhibit a giant magnetocaloric effect (MCE) and are extensively studied for room temperature applications. The reduction of their transition temperature below 77 K can pave the way for the potential application of these materials for hydrogen liquefaction using cryogenic magnetic refrigeration. Most of the known magnetocaloric materials with a giant MCE below 77 K are rare-earth-based compounds. In order to explore the possibility of developing rare-earth-free compounds with cryogenic MCE, we collected a dataset by conducting data mining on published experimental results on Fe2P-type magnetocaloric compounds and used machine learning for composition optimization aiming at lowering the transition temperature below 77 K. Guided by the predictions of an artificial neural network, we found a promising composition of Mn1.70Fe0.30P0.63Si0.37 with a transition temperature of 97 K at 1 T magnetic field which was lowered to 73 K by the minor substitution of Fe with Co. The developed rare-earth-free compounds exhibit a large magnetocaloric performance in isothermal magnetic entropy change (∆SM) of 7.5–11.5 J/kgK at the temperatures below 100 K. This study demonstrates that data-driven development of magnetocaloric materials can efficiently boost the optimization of their properties, thus aiding the practical applicability of magnetic refrigeration technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助米团采纳,获得10
2秒前
SZK发布了新的文献求助10
2秒前
研友_Zrlk7L发布了新的文献求助10
3秒前
3秒前
cheryl完成签到,获得积分10
3秒前
彭于晏应助小花生zz采纳,获得30
4秒前
Cassie完成签到,获得积分10
5秒前
5秒前
小马甲应助成就紫真采纳,获得10
7秒前
散装洋芋完成签到 ,获得积分10
8秒前
zbl1314zbl完成签到,获得积分10
9秒前
9秒前
斯文败类应助Junsir采纳,获得10
9秒前
汉堡包应助asdfasdfj采纳,获得10
9秒前
10秒前
研友_Zrlk7L完成签到,获得积分10
10秒前
11秒前
fang完成签到,获得积分10
11秒前
TFBOY发布了新的文献求助20
14秒前
14秒前
时空路人完成签到,获得积分10
15秒前
听闻墨笙发布了新的文献求助10
15秒前
SYLH应助研友_Zrlk7L采纳,获得10
15秒前
梦幻时空发布了新的文献求助30
16秒前
自私的猫完成签到,获得积分10
16秒前
奶黄包应助Ftplanet采纳,获得30
16秒前
17秒前
成就紫真发布了新的文献求助10
17秒前
18秒前
18秒前
cxzdm完成签到,获得积分10
19秒前
liuyaofeng完成签到,获得积分10
19秒前
20秒前
Junsir发布了新的文献求助10
20秒前
TFBOY完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
Binbin发布了新的文献求助10
22秒前
22秒前
WKJiang发布了新的文献求助10
23秒前
乐乐应助AoAoo采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951098
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082428
捐赠科研通 3226957
什么是DOI,文献DOI怎么找? 1784092
邀请新用户注册赠送积分活动 868183
科研通“疑难数据库(出版商)”最低求助积分说明 801069