Benchmark on Automatic Six-Month-Old Infant Brain Segmentation Algorithms: The iSeg-2017 Challenge

分割 人工智能 计算机科学 豪斯多夫距离 大脑发育 白质 磁共振成像 图像分割 模式识别(心理学) 机器学习 心理学 医学 神经科学 放射科
作者
Li Wang,Dong Nie,Guannan Li,Élodie Puybareau,José Dolz,Qian Zhang,Fan Wang,Jing Xia,Zhengwang Wu,Jiawei Chen,Kim-Han Thung,Toan Duc Bui,Jitae Shin,Guodong Zeng,Guoyan Zheng,Vladimir S. Fonov,Andrew Doyle,Yongchao Xu,Pim Moeskops,Josien P. W. Pluim,Christian Desrosiers,Ismail Ben Ayed,Gerard Sanromà,Oualid Benkarim,Adrià Casamitjana,Verónica Vilaplana,Weili Lin,Gang Li,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (9): 2219-2230 被引量:138
标识
DOI:10.1109/tmi.2019.2901712
摘要

Accurate segmentation of infant brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid is an indispensable foundation for early studying of brain growth patterns and morphological changes in neurodevelopmental disorders. Nevertheless, in the isointense phase (approximately 6-9 months of age), due to inherent myelination and maturation process, WM and GM exhibit similar levels of intensity in both T1-weighted and T2-weighted MR images, making tissue segmentation very challenging. Although many efforts were devoted to brain segmentation, only a few studies have focused on the segmentation of six-month infant brain images. With the idea of boosting methodological development in the community, iSeg-2017 challenge (http://iseg2017.web.unc.edu) provides a set of six-month infant subjects with manual labels for training and testing the participating methods. Among the 21 automatic segmentation methods participating in iSeg-2017, we review the eight top-ranked teams, in terms of Dice ratio, modified Hausdorff distance, and average surface distance, and introduce their pipelines, implementations, as well as source codes. We further discuss the limitations and possible future directions. We hope the dataset in iSeg-2017, and this paper could provide insights into methodological development for the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
希望天下0贩的0应助hiipaige采纳,获得30
2秒前
xiaoyao完成签到,获得积分10
3秒前
3秒前
老阳发布了新的文献求助10
4秒前
少年完成签到,获得积分10
4秒前
罗彩明发布了新的文献求助10
6秒前
单山蘸水完成签到,获得积分10
6秒前
orixero应助绿野金采纳,获得10
7秒前
菠萝冰棒发布了新的文献求助10
7秒前
7秒前
zain发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
9秒前
9秒前
DDG完成签到,获得积分20
9秒前
搜集达人应助熊二浪采纳,获得10
10秒前
hyh完成签到,获得积分10
11秒前
科研通AI5应助Phalloidin采纳,获得10
11秒前
12秒前
112我的发布了新的文献求助10
12秒前
李健应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
今天开心应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得80
13秒前
情怀应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
Andy_Cheung应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882