Comparison Detector: Convolutional Neural Networks for Cervical Cell Detection

计算机科学 卷积神经网络 人工智能 判别式 探测器 目标检测 分割 模式识别(心理学) 特征(语言学) 特征提取 宫颈癌 癌症 医学 电信 语言学 哲学 内科学
作者
Yixiong Liang,Zhihong Tang,Meng Yan,Jialin Chen,Yao Xiang
出处
期刊:Cornell University - arXiv 被引量:1
摘要

Automated detection of cervical cancer cells or cell clumps has the potential to significantly reduce error rate and increase productivity in cervical cancer screening. However, most traditional methods rely on the success of accurate cell segmentation and discriminative hand-crafted features extraction. Recently there are emerging deep learning-based methods which train convolutional neural networks (CNN) to classify image patches, but they are computationally expensive. In this paper we propose an efficient CNN-based object detection methods for cervical cancer cells/clumps detection. Specifically, we utilize the state-of-the-art two-stage object detection method, the Faster-RCNN with Feature Pyramid Network (FPN) as the baseline and propose a novel comparison detector to deal with the limited data problem. The key idea is that classify the proposals by comparing with the reference samples of each category in object detection. In addition, we propose to learn the reference samples of the background from data instead of manually choosing them by some heuristic rules. Experimental results show that the proposed Comparison Detector yields significant improvement on the small dataset, achieving a mean Average Precision (mAP) of 26.3% and an Average Recall (AR) of 35.7%, both improving about 20 points compared to the baseline. Moreover, Comparison Detector improved AR by 4.6 points and achieved marginally better performance in terms of mAP compared with baseline model when training on the medium dataset. Our method is promising for the development of automation-assisted cervical cancer screening systems. Code is available at this https URL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任大师兄发布了新的文献求助10
刚刚
lcsolar完成签到,获得积分10
1秒前
1秒前
hhhhyhhh发布了新的文献求助10
2秒前
科研通AI5应助凉白开采纳,获得10
2秒前
mk发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
小希完成签到,获得积分10
3秒前
Akim应助愤怒的qiang采纳,获得10
3秒前
4秒前
4秒前
5秒前
sfdghik发布了新的文献求助10
5秒前
6秒前
严笑容发布了新的文献求助10
8秒前
sfdghik完成签到,获得积分10
10秒前
沐沐羚完成签到,获得积分10
12秒前
小希驳回了烟花应助
12秒前
12秒前
今后应助晏啊采纳,获得10
13秒前
13秒前
15秒前
Ultraviolet发布了新的文献求助10
17秒前
18秒前
19秒前
天天快乐应助知性的采珊采纳,获得10
20秒前
Lucas应助知性的采珊采纳,获得10
20秒前
虚心傲丝发布了新的文献求助30
22秒前
tang_c完成签到,获得积分10
27秒前
乐乐应助宣孤菱采纳,获得10
28秒前
29秒前
争取不秃顶的医学僧完成签到,获得积分10
29秒前
30秒前
漂亮幻莲发布了新的文献求助10
30秒前
虚心傲丝完成签到,获得积分10
30秒前
31秒前
32秒前
glj完成签到,获得积分10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794