已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Velocity Prediction of Intelligent and Connected Vehicles for a Traffic Light Distance on the Urban Road

弹道 智能交通系统 计算机科学 遗传算法 均方误差 模拟 鉴定(生物学) 车辆信息通信系统 工程类 道路交通 运输工程 数学 机器学习 统计 生物 物理 植物 天文
作者
Wei Zhou,Lin Yang,Tianxing Ying,Jingni Yuan,Yang Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:20 (11): 4119-4133 被引量:22
标识
DOI:10.1109/tits.2018.2882609
摘要

Accurate vehicle velocity prediction has important theoretical value and widespread applications in many areas, such as optimal control of vehicle propulsion system, eco-driving, and advanced driver assistance systems. However, for dynamic changes of traffic condition caused by traffic lights, intersections, and other factors, it is hard to predict the vehicle velocity accurately on the urban road. In this paper, we present a novel vehicle velocity prediction algorithm for intelligent and connected vehicles based on the historical driving data of the preceding vehicle and traffic light information. First, the basic driving rules on the urban road are studied in two different driving scenarios. Then, a vehicle trajectory generation algorithm (VTGA) is proposed to generate the vehicles' trajectories according to the basic driving rules. To identify vehicles' quantity and the global positioning system information of each vehicle in the unknown area, an identification algorithm (IA) is designed based on the VTGA and genetic algorithm. Finally, a vehicle velocity prediction algorithm is applied to predict the velocity of the target vehicle based on the VTGA and the results of IA. To verify the method proposed in this paper, the next generation simulation database is utilized. The results demonstrate that the accuracy of the vehicle velocity prediction has a significant improvement in the urban network, and the root-mean-square error reduces from 0.50 ~ 4.78 m/s (5 ~ 20 s) to 0.7594 ~ 0.9166 m/s (9.3 ~ 43.8 s), when compared with methods of other studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ah完成签到,获得积分10
1秒前
2秒前
俏皮小小发布了新的文献求助10
2秒前
小二郎应助喜悦惜寒采纳,获得10
2秒前
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
充电宝应助俏皮小小采纳,获得10
8秒前
在水一方应助杨振采纳,获得10
10秒前
11秒前
健壮雨兰发布了新的文献求助10
11秒前
11秒前
无情洋葱应助Nes采纳,获得10
11秒前
ac发布了新的文献求助10
12秒前
13秒前
13秒前
顾矜应助巴拉拉小魔仙采纳,获得10
15秒前
可乐发布了新的文献求助10
16秒前
17秒前
卡布叻完成签到 ,获得积分10
19秒前
Telomere发布了新的文献求助10
19秒前
19秒前
我在赶完成签到,获得积分10
20秒前
21秒前
碎碎念s完成签到,获得积分20
22秒前
漫趣发布了新的文献求助10
22秒前
英俊的铭应助hua采纳,获得10
23秒前
852应助可乐采纳,获得10
24秒前
feng完成签到,获得积分10
25秒前
26秒前
26秒前
wjm完成签到,获得积分20
29秒前
情怀应助ac采纳,获得10
30秒前
朴素妙梦发布了新的文献求助10
31秒前
甄水瑶发布了新的文献求助30
31秒前
会飞的猪完成签到,获得积分10
32秒前
32秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417194
求助须知:如何正确求助?哪些是违规求助? 3018881
关于积分的说明 8885665
捐赠科研通 2706288
什么是DOI,文献DOI怎么找? 1484125
科研通“疑难数据库(出版商)”最低求助积分说明 685944
邀请新用户注册赠送积分活动 681108