Structure–Activity and Structure–Conformation Relationships of Aryl Propionic Acid Inhibitors of the Kelch-like ECH-Associated Protein 1/Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1/NRF2) Protein–Protein Interaction

化学 芳基 KEAP1型 生物化学 立体化学 转录因子 有机化学 基因 烷基
作者
Tom D. Heightman,James F. Callahan,Elisabetta Chiarparin,Joseph E. Coyle,Charlotte M. Griffiths‐Jones,Ami S. Lakdawala,Rachel McMenamin,Paul N. Mortenson,David L. Norton,Torren M. Peakman,Sharna J. Rich,Caroline J. Richardson,William L. Rumsey,Yolanda Sánchez,Gordon Saxty,Henriëtte M. G. Willems,Lawrence A. Wolfe,Alison J.‐A. Woolford,Zining Wu,Yan Huang,Jeffrey K. Kerns,Thomas G. Davies
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:62 (9): 4683-4702 被引量:65
标识
DOI:10.1021/acs.jmedchem.9b00279
摘要

The KEAP1–NRF2-mediated cytoprotective response plays a key role in cellular homoeostasis. Insufficient NRF2 signaling during chronic oxidative stress may be associated with the pathophysiology of several diseases with an inflammatory component, and pathway activation through direct modulation of the KEAP1–NRF2 protein–protein interaction is being increasingly explored as a potential therapeutic strategy. Nevertheless, the physicochemical nature of the KEAP1–NRF2 interface suggests that achieving high affinity for a cell-penetrant druglike inhibitor might be challenging. We recently reported the discovery of a highly potent tool compound which was used to probe the biology associated with directly disrupting the interaction of NRF2 with the KEAP1 Kelch domain. We now present a detailed account of the medicinal chemistry campaign leading to this molecule, which included exploration and optimization of protein–ligand interactions in three energetic "hot spots" identified by fragment screening. In particular, we also discuss how consideration of ligand conformational stabilization was important to its development and present evidence for preorganization of the lead compound which may contribute to its high affinity and cellular activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason发布了新的文献求助10
1秒前
Dongfu_FA发布了新的文献求助10
1秒前
zjt关闭了zjt文献求助
2秒前
2秒前
3秒前
所所应助小白采纳,获得10
4秒前
bnjb发布了新的文献求助10
4秒前
豆豆完成签到,获得积分20
4秒前
4114完成签到,获得积分10
5秒前
6秒前
三黑猫应助谷安采纳,获得10
6秒前
mi1486325完成签到,获得积分10
6秒前
赘婿应助顺利大门采纳,获得10
6秒前
yh发布了新的文献求助10
7秒前
7秒前
尊敬曼岚发布了新的文献求助10
8秒前
Nic发布了新的文献求助10
10秒前
10秒前
淋雨的猪发布了新的文献求助10
11秒前
11秒前
HHN发布了新的文献求助10
12秒前
Mrking发布了新的文献求助10
12秒前
善学以致用应助Dongfu_FA采纳,获得10
12秒前
13秒前
汉堡包应助二东采纳,获得10
14秒前
研友_VZG7GZ应助王妍采纳,获得10
14秒前
15秒前
wanci应助淋雨的猪采纳,获得10
15秒前
科目三应助yh采纳,获得10
16秒前
哇嘞发布了新的文献求助10
17秒前
伟大的鲁路皇完成签到,获得积分10
17秒前
光亮夏槐发布了新的文献求助10
18秒前
19秒前
自然篮球完成签到,获得积分20
19秒前
星河圈揽完成签到,获得积分10
20秒前
认真的小海豚完成签到 ,获得积分10
21秒前
小神仙完成签到,获得积分10
21秒前
丘比特应助Gao_Z_X采纳,获得10
21秒前
孔雀吃披萨完成签到,获得积分10
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076804
求助须知:如何正确求助?哪些是违规求助? 2729802
关于积分的说明 7510010
捐赠科研通 2378023
什么是DOI,文献DOI怎么找? 1260989
科研通“疑难数据库(出版商)”最低求助积分说明 611204
版权声明 597203