Accurate extraction of outermost biological characteristic curves in tooth preparations with fuzzy regions

曲率 研磨 模糊逻辑 计算机科学 算法 数学 图形 人工智能 模式识别(心理学) 几何学 材料科学 理论计算机科学 复合材料 研磨
作者
Xun� Li,Xin Wang,Ming Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:103: 208-219 被引量:8
标识
DOI:10.1016/j.compbiomed.2018.10.026
摘要

The accuracy of extraction of biological characteristic curves in tooth preparations directly determines whether the tooth restorations and preparations are closely matched to allow appropriate adhesion. Ultimately, these will affect the success of the dental restoration surgery. In the process to obtain the tooth preparation, the dentist is required to grind the tooth manually and fuzzy regions may thus exist. Multiple feature curves with locally increased curvatures exist in these fuzzy regions, but only the outermost is preferred. The characteristic curve consists of points, some with and some without extreme curvature values. This study aims to extract an accurate biological characteristic curve. This challenging problem is mapped to the search of the minimum cost path for a graph, and is solved using the well-known A* algorithm. To identify the mapped graph, the outward direction coefficient is first introduced followed by the extremality coefficient node. Both of these coefficients ensure that the biological characteristic curve can be accurately extracted. The conducted experiment demonstrated that the proposed algorithm can rapidly, accurately, and automatically obtain the outermost feature curve which passes through the fuzzy region of the tooth preparation. Additionally, the part of the biological characteristic curve related to the non-fuzzy region can also be accurately extracted. The proposed algorithm significantly improves the accuracy of the extraction curve and the quality of the restoration design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
藤椒辣鱼应助潇洒采纳,获得30
1秒前
可爱的函函应助西子阳采纳,获得10
2秒前
Doctor_jie发布了新的文献求助10
3秒前
蝶步韶华发布了新的文献求助10
4秒前
4秒前
4秒前
Hululu完成签到 ,获得积分10
4秒前
xxh发布了新的文献求助10
5秒前
丘比特应助李灿采纳,获得10
7秒前
7秒前
ddd发布了新的文献求助10
7秒前
Wang发布了新的文献求助10
8秒前
Luminous1123完成签到 ,获得积分10
8秒前
腰果虾仁发布了新的文献求助10
9秒前
11秒前
aistudy发布了新的文献求助10
11秒前
12秒前
陈芒果啊完成签到 ,获得积分10
13秒前
14秒前
15秒前
诺木发布了新的文献求助10
17秒前
无奈曼云完成签到,获得积分10
20秒前
燕燕完成签到 ,获得积分10
20秒前
麻雀关注了科研通微信公众号
21秒前
兽医12138完成签到 ,获得积分10
22秒前
郭郭郭完成签到,获得积分10
23秒前
24秒前
ljhong1116完成签到,获得积分10
25秒前
sjb发布了新的文献求助10
28秒前
29秒前
gecy完成签到 ,获得积分10
30秒前
zyz完成签到,获得积分10
31秒前
32秒前
腰果虾仁完成签到,获得积分10
33秒前
Owen应助耶比环肽采纳,获得10
33秒前
糖果发布了新的文献求助10
33秒前
sjb完成签到,获得积分10
34秒前
ljhong1116发布了新的文献求助150
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461234
求助须知:如何正确求助?哪些是违规求助? 3054927
关于积分的说明 9045666
捐赠科研通 2744832
什么是DOI,文献DOI怎么找? 1505707
科研通“疑难数据库(出版商)”最低求助积分说明 695794
邀请新用户注册赠送积分活动 695233