钒
普鲁士蓝
材料科学
聚乙二醇
无机化学
水溶液
插层(化学)
电解质
电化学
阴极
氧化还原
化学工程
化学
电极
有机化学
物理化学
工程类
作者
Ping Jiang,Zhenyu Lei,Liang Chen,Xuecheng Shao,Xinmiao Liang,Jun Zhang,Yanchao Wang,Jiujun Zhang,Zhaoping Liu,Jiwen Feng
标识
DOI:10.1021/acsami.9b04849
摘要
Vanadium hexacyanoferrate (VHCF) with an open-framework crystal structure is a promising cathode material for rechargeable aqueous metal-ion batteries owing to its high electrochemical performance and easy synthesis. In this paper, vanadium hexacyanoferrate cathodes were first used for constructing rechargeable aqueous sodium-ion batteries (VHCF/WO3) and tested in the new-type electrolyte (NaP-4.6) consisting of a polyethylene glycol (PEG)/H2O/NaClO4 electrolyte with a low H+ concentration (molar ratio of [H2O]/[Na+] is 4.6), which has high stability at a high current density as high as 1000 mA g–1 with a capacity retention of 90.3% after 2000 cycles at high coulombic efficiency (above 97.8%). To understand their outstanding performance, the proton-assisted sodium-ion storage mechanism and interphase chemistry of VHCF are investigated by solid-state NMR (ssNMR) technology. It is suggested that the H+ storage reaction is accompanied by the redox of vanadium atoms and Na+ intercalation is accompanied by the redox of iron atoms. It is also observed that the complex of polyethylene glycol (PEG) with Na+ (PEG–Na+) exists on the VHCF surface, which facilitates the stability of VHCF and promotes the alkali-ion transfer at a high current density. The results of the ssNMR study offer new insights into the intercalation chemistry of Prussian blue analogues with open-framework-structured compounds, which can greatly broaden our horizons for battery research.
科研通智能强力驱动
Strongly Powered by AbleSci AI