Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms

卷积神经网络 均方误差 水准点(测量) 计算机科学 人工神经网络 深度学习 算法 期限(时间) 人工智能 统计 数学 物理 量子力学 大地测量学 地理
作者
Sujan Ghimire,Ravinesh C. Deo,Nawin Raj,Jianchun Mi
出处
期刊:Applied Energy [Elsevier]
卷期号:253: 113541-113541 被引量:312
标识
DOI:10.1016/j.apenergy.2019.113541
摘要

This paper designs a hybridized deep learning framework that integrates the Convolutional Neural Network for pattern recognition with the Long Short-Term Memory Network for half-hourly global solar radiation (GSR) forecasting. The Convolution network is applied to robustly extract data input features from predictive variables (i.e., statistically significant antecedent inputs) while Long Short-Term Memory absorbs them for prediction. Half-hourly GSR for Alice Springs (Australia: 01 January 2006 to 31 August 2018) are extracted with stationarity checks applied via unit-root and mutual information test to capture antecedent GSR values required to forecast future GSR. The proposed hybrid model is benchmarked with standalone models as well as other Deep Learning, Single Hidden Layer and Tree based models. The results show that the benchmarked models are not able to generate satisfactory GSR predictions and the proposed hybrid model outperforms all other counterparts. The hybrid model registers superior results with over 70% of predictive errors lying below ±10 Wm−2 and outperforms the benchmark model for 1-Day half-hourly GSR prediction with low Relative Root Mean Square Error (≈1.515%), Mean Absolute Percentage Error (≈4.672%) and Absolute Percentage Bias (≈1.233%). This study ascertains that a proposed hybrid model based on a convolution network framework can accurately predict GSR and enable energy availability to be regularly monitored over multi-step horizons when coupled with a low latency Long Short-Term Memory network. Furthermore, it also concludes that the proposed model can have practical implications in forecasting GSR, capitalizing its versatility as a stratagem in monitoring solar powered systems by integrating freely available solar radiation into a real power grid system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老陈完成签到,获得积分10
刚刚
科研通AI2S应助Xiangguang采纳,获得10
1秒前
CMC完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
caosenming完成签到,获得积分10
2秒前
幸运完成签到 ,获得积分10
3秒前
3秒前
4秒前
完美世界应助lglalex采纳,获得10
4秒前
5秒前
5秒前
赘婿应助zzy采纳,获得10
6秒前
鲤鱼问雁发布了新的文献求助10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
yar完成签到 ,获得积分10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
kingwill应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
7秒前
lmy发布了新的文献求助50
7秒前
无花果应助青柠采纳,获得10
8秒前
8秒前
caosenming发布了新的文献求助10
10秒前
ElbingX完成签到,获得积分10
11秒前
12秒前
2301发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
橙汁完成签到,获得积分10
15秒前
末晶发布了新的文献求助10
16秒前
小刘爱读文献完成签到 ,获得积分10
17秒前
传奇3应助方格采纳,获得10
17秒前
17秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434477
求助须知:如何正确求助?哪些是违规求助? 3031598
关于积分的说明 8942726
捐赠科研通 2719691
什么是DOI,文献DOI怎么找? 1491881
科研通“疑难数据库(出版商)”最低求助积分说明 689574
邀请新用户注册赠送积分活动 685722