范畴变量
计算机科学
人工智能
机器学习
编码(内存)
边距(机器学习)
集合(抽象数据类型)
分析
支持向量机
人口统计学的
模式识别(心理学)
特征(语言学)
特征向量
预测分析
二进制数
数据挖掘
数学
算术
哲学
社会学
人口学
语言学
程序设计语言
作者
Xiangnan He,Tat-Seng Chua
标识
DOI:10.1145/3077136.3080777
摘要
Many predictive tasks of web applications need to model categorical variables, such as user IDs and demographics like genders and occupations. To apply standard machine learning techniques, these categorical predictors are always converted to a set of binary features via one-hot encoding, making the resultant feature vector highly sparse. To learn from such sparse data effectively, it is crucial to account for the interactions between features.
科研通智能强力驱动
Strongly Powered by AbleSci AI