Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram

Softmax函数 卷积神经网络 计算机科学 模式识别(心理学) 特征(语言学) 人工智能 特征提取 语言学 哲学
作者
Wenhan Liu,Qijun Huang,Sheng Chang,Hao Wang,Jin He
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:45: 22-32 被引量:118
标识
DOI:10.1016/j.bspc.2018.05.013
摘要

Generally, 12-lead electrocardiogram (ECG) is widely used in MI diagnosis. It has two unique attributes namely integrity and diversity. But most of the previous studies on automated MI diagnosis algorithm didn’t utilize these two attributes simultaneously. In this paper, a novel Multiple-Feature-Branch Convolutional Neural Network (MFB-CNN) is proposed for automated MI detection and localization using ECG. Each independent feature branch of the MFB-CNN corresponds to a certain lead. Individual features of a lead can be learned by a feature branch, exploiting the diversity among the 12 leads. Global fully-connected softmax layer can exploit the integrity, summarizing all the feature branches. Based on deep learning framework, no hand-designed features are required for analysis. Furthermore, patient-specific paradigm is adopted to manage the inter-patient variability, which is a significant challenge for automated diagnosis. Also, class-based experiment (regardless of the inter-patient variability) is performed. The proposed algorithm is evaluated using the ECG data from PTB diagnostic database. It can achieve a good performance in MI diagnosis. For class-based MI detection and localization, the average accuracies are up to 99.95% and 99.81%, respectively; for patient-specific experiment, the average accuracies of MI detection and localization are 98.79% and 94.82%, respectively. Considering its excellent performance, the MFB-CNN can be applied to computer-aided diagnosis platform to assist the real-world MI detection and localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
刚刚
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
热木发布了新的文献求助10
2秒前
迷路的以山完成签到 ,获得积分10
2秒前
诚心谷南发布了新的文献求助10
3秒前
小盼盼盼完成签到,获得积分20
3秒前
3秒前
franklove完成签到,获得积分10
4秒前
5秒前
ning发布了新的文献求助10
5秒前
5秒前
nanfang完成签到 ,获得积分10
5秒前
无花果应助勇往直前采纳,获得10
5秒前
阎听筠给阎听筠的求助进行了留言
6秒前
手可摘星辰完成签到,获得积分10
6秒前
Owen应助张朵拉采纳,获得10
6秒前
8秒前
神奇的光子完成签到,获得积分10
8秒前
OWSPACE发布了新的文献求助10
8秒前
9秒前
Yocohua完成签到,获得积分10
9秒前
10秒前
Dabiel1213完成签到,获得积分10
10秒前
11秒前
12秒前
周冯雪完成签到 ,获得积分10
14秒前
14秒前
14秒前
smz完成签到 ,获得积分10
16秒前
信徒完成签到,获得积分10
16秒前
勇往直前发布了新的文献求助10
17秒前
木木完成签到,获得积分10
19秒前
静谧180完成签到 ,获得积分10
19秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587