Improved heavy metal mapping and pollution source apportionment in Shanghai City soils using auxiliary information

分摊 污染 环境科学 土壤水分 污染物 地理加权回归模型 环境工程 环境化学 土壤科学 化学 数学 统计 政治学 有机化学 法学 生物 生态学
作者
Xufeng Fei,George Christakos,Rui Xiao,Zhouqiao Ren,Yue Liu,Xiaonan Lv
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:661: 168-177 被引量:116
标识
DOI:10.1016/j.scitotenv.2019.01.149
摘要

Soil heavy metal pollution can be a serious threat to human health and the environment. The accurate mapping of the spatial distribution of soil heavy metal pollutant concentrations enables the detection of high pollution areas and facilitates pollution source apportionment and control. To make full use of auxiliary soil properties information and show that they can improve mapping, a synthesis of the Bayesian Maximum Entropy (BME) theory and the Geographically Weighted Regression (GWR) model is proposed and implemented in the study of the Shanghai City soils (China). The results showed that, compared to traditional techniques, the proposed BME-GWR synthesis has certain important advantages: (a) it integrates heavy metal measurements and auxiliary information on a sound theoretical basis, and (b) it performs better in terms of both prediction accuracy and implementation flexibility (including the assimilation of multiple data sources). Based on the heavy metal concentration maps generated by BME-GWR, we found that the As, Cr and Pb concentration levels are high in the eastern part of Shanghai, whereas high Cd concentration levels were observed in the northwestern part of the city. Organic carbon and pH were significantly correlated with most of the heavy metals in Shanghai soils. We concluded that Cd pollution is mainly the result of agricultural activities, and that the Cr pollution is attributed to natural sources, whereas Pb and As have compound pollution sources. Future studies should investigate the implementation of BME-GWR in the case of space-time heavy metal mapping and its ability to integrate human activity information and soil category variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阮逸君完成签到,获得积分20
刚刚
科研达人完成签到,获得积分10
1秒前
搞怪的又蓝完成签到,获得积分10
1秒前
衣袖染墨色完成签到,获得积分10
1秒前
认真的灵竹完成签到 ,获得积分10
2秒前
慕青应助Yatsennnn采纳,获得10
2秒前
虚心的惮完成签到 ,获得积分10
2秒前
hi_zhanghao完成签到,获得积分0
4秒前
悉达多完成签到,获得积分10
5秒前
5秒前
思源应助yuchangkun采纳,获得10
5秒前
spencer177完成签到,获得积分10
6秒前
CLL完成签到 ,获得积分10
6秒前
Curry完成签到 ,获得积分10
7秒前
陈明娃完成签到,获得积分10
7秒前
威武的凡桃完成签到,获得积分10
7秒前
YuenYuen完成签到,获得积分10
7秒前
挡住所有坏运气888完成签到,获得积分10
8秒前
小明完成签到,获得积分10
8秒前
大个应助bb采纳,获得10
8秒前
azusa完成签到,获得积分10
8秒前
自由饼干完成签到,获得积分10
9秒前
MOON完成签到,获得积分10
9秒前
9秒前
峰回路转完成签到,获得积分10
10秒前
冬凌草应助科研通管家采纳,获得20
11秒前
DijiaXu应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
77应助科研通管家采纳,获得10
12秒前
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
香蕉觅云应助慢羊羊采纳,获得10
12秒前
12秒前
12秒前
oh应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
13秒前
乐一李完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044