Improved heavy metal mapping and pollution source apportionment in Shanghai City soils using auxiliary information

分摊 污染 环境科学 土壤水分 污染物 地理加权回归模型 环境工程 环境化学 土壤科学 化学 数学 统计 政治学 有机化学 法学 生物 生态学
作者
Xufeng Fei,George Christakos,Rui Xiao,Zhouqiao Ren,Yue Liu,Xiaonan Lv
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:661: 168-177 被引量:116
标识
DOI:10.1016/j.scitotenv.2019.01.149
摘要

Soil heavy metal pollution can be a serious threat to human health and the environment. The accurate mapping of the spatial distribution of soil heavy metal pollutant concentrations enables the detection of high pollution areas and facilitates pollution source apportionment and control. To make full use of auxiliary soil properties information and show that they can improve mapping, a synthesis of the Bayesian Maximum Entropy (BME) theory and the Geographically Weighted Regression (GWR) model is proposed and implemented in the study of the Shanghai City soils (China). The results showed that, compared to traditional techniques, the proposed BME-GWR synthesis has certain important advantages: (a) it integrates heavy metal measurements and auxiliary information on a sound theoretical basis, and (b) it performs better in terms of both prediction accuracy and implementation flexibility (including the assimilation of multiple data sources). Based on the heavy metal concentration maps generated by BME-GWR, we found that the As, Cr and Pb concentration levels are high in the eastern part of Shanghai, whereas high Cd concentration levels were observed in the northwestern part of the city. Organic carbon and pH were significantly correlated with most of the heavy metals in Shanghai soils. We concluded that Cd pollution is mainly the result of agricultural activities, and that the Cr pollution is attributed to natural sources, whereas Pb and As have compound pollution sources. Future studies should investigate the implementation of BME-GWR in the case of space-time heavy metal mapping and its ability to integrate human activity information and soil category variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Ezio_sunhao采纳,获得10
1秒前
科研通AI5应助笨笨的复天采纳,获得10
2秒前
2秒前
Annie完成签到 ,获得积分10
2秒前
Akim应助ZYY采纳,获得10
2秒前
共享精神应助zfcc采纳,获得10
3秒前
3秒前
dodo发布了新的文献求助10
4秒前
wzy发布了新的文献求助10
4秒前
洁净之卉发布了新的文献求助50
4秒前
康若英完成签到,获得积分10
4秒前
波波完成签到 ,获得积分10
4秒前
健壮的涑发布了新的文献求助10
4秒前
豆豆完成签到 ,获得积分10
5秒前
万能图书馆应助Qwepo8采纳,获得10
5秒前
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得30
6秒前
跳跃的翼应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助风屿采纳,获得10
6秒前
MchemG应助科研通管家采纳,获得30
6秒前
华仔应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
chen发布了新的文献求助10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133034
求助须知:如何正确求助?哪些是违规求助? 4334358
关于积分的说明 13503569
捐赠科研通 4171281
什么是DOI,文献DOI怎么找? 2287061
邀请新用户注册赠送积分活动 1287947
关于科研通互助平台的介绍 1228783