已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved heavy metal mapping and pollution source apportionment in Shanghai City soils using auxiliary information

分摊 污染 环境科学 土壤水分 污染物 地理加权回归模型 环境工程 环境化学 土壤科学 化学 数学 统计 政治学 有机化学 法学 生物 生态学
作者
Xufeng Fei,George Christakos,Rui Xiao,Zhouqiao Ren,Yue Liu,Xiaonan Lv
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:661: 168-177 被引量:116
标识
DOI:10.1016/j.scitotenv.2019.01.149
摘要

Soil heavy metal pollution can be a serious threat to human health and the environment. The accurate mapping of the spatial distribution of soil heavy metal pollutant concentrations enables the detection of high pollution areas and facilitates pollution source apportionment and control. To make full use of auxiliary soil properties information and show that they can improve mapping, a synthesis of the Bayesian Maximum Entropy (BME) theory and the Geographically Weighted Regression (GWR) model is proposed and implemented in the study of the Shanghai City soils (China). The results showed that, compared to traditional techniques, the proposed BME-GWR synthesis has certain important advantages: (a) it integrates heavy metal measurements and auxiliary information on a sound theoretical basis, and (b) it performs better in terms of both prediction accuracy and implementation flexibility (including the assimilation of multiple data sources). Based on the heavy metal concentration maps generated by BME-GWR, we found that the As, Cr and Pb concentration levels are high in the eastern part of Shanghai, whereas high Cd concentration levels were observed in the northwestern part of the city. Organic carbon and pH were significantly correlated with most of the heavy metals in Shanghai soils. We concluded that Cd pollution is mainly the result of agricultural activities, and that the Cr pollution is attributed to natural sources, whereas Pb and As have compound pollution sources. Future studies should investigate the implementation of BME-GWR in the case of space-time heavy metal mapping and its ability to integrate human activity information and soil category variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麋鹿完成签到 ,获得积分10
2秒前
宝贝丫头完成签到 ,获得积分10
10秒前
乘月完成签到,获得积分10
11秒前
orange完成签到,获得积分20
13秒前
13秒前
嫁接诺贝尔应助小李叭叭采纳,获得10
13秒前
陈泓思应助小李叭叭采纳,获得10
14秒前
情怀应助小李叭叭采纳,获得10
14秒前
16秒前
xue完成签到 ,获得积分10
16秒前
16秒前
轻松不言发布了新的文献求助10
18秒前
deeferf完成签到 ,获得积分10
19秒前
kai完成签到,获得积分10
19秒前
假期会发芽完成签到 ,获得积分10
21秒前
老中医发布了新的文献求助10
22秒前
磷酸盐完成签到 ,获得积分20
27秒前
灵巧的幻竹完成签到,获得积分20
27秒前
幽默鼠标完成签到 ,获得积分10
27秒前
29秒前
qianchimo完成签到 ,获得积分10
30秒前
星辰大海应助迟大猫采纳,获得10
31秒前
斯文败类应助灵巧的幻竹采纳,获得10
32秒前
招水若离完成签到,获得积分0
33秒前
zzz发布了新的文献求助10
33秒前
纯情的无色完成签到 ,获得积分10
35秒前
kai发布了新的文献求助10
37秒前
37秒前
隐形曼青应助Zzjinyu采纳,获得10
37秒前
CipherSage应助胡图图采纳,获得10
39秒前
cxx完成签到 ,获得积分10
40秒前
wintersss完成签到,获得积分10
40秒前
贼吖完成签到 ,获得积分10
41秒前
Qi应助科研通管家采纳,获得10
42秒前
小乔应助科研通管家采纳,获得10
42秒前
42秒前
在水一方应助科研通管家采纳,获得10
42秒前
Qi应助科研通管家采纳,获得10
42秒前
Lucas应助科研通管家采纳,获得10
42秒前
赘婿应助科研通管家采纳,获得10
42秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Primary batteries 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700002
求助须知:如何正确求助?哪些是违规求助? 3250416
关于积分的说明 9868971
捐赠科研通 2962298
什么是DOI,文献DOI怎么找? 1624552
邀请新用户注册赠送积分活动 769416
科研通“疑难数据库(出版商)”最低求助积分说明 742237